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ABSTRACT 

The convergence of Artificial Intelligence (AI) and the Internet of Things (IoT) is 

transforming conventional agricultural practices into intelligent, data-driven systems that 

enhance productivity and sustainability. This research presents a novel AI-powered IoT 

framework for smart irrigation and fertilizer management in precision farming, aimed at 

optimizing resource utilization and improving crop yield in real time. The system envisioned 

combines an IoT sensor network of high density to monitor important environmental and 

agronomic variables in real time, including soil water content, nutrient levels, humidity, 

temperature, and crop phenology. These streams are then analyzed using AI-powered 

algorithms such as Random Forest, LSTM networks, and Reinforcement Learning models to 

power predictive analysis and adaptive decision-making. Random Forest algorithm assists in 

soil condition classification and estimation of nutrient deficits, whereas LSTM models predict 

irrigation needs by examining time series patterns in soil moisture and weather readings. 

Reinforcement Learning automatically tunes irrigation planning and fertilizer application 

based on real-time feedback from soil sensors and vegetation response indicators to provide 

maximum water and nutrient supply with minimum wastage. The combination of edge 

analytics and cloud computing guarantees real-time processing of data, remote monitoring, 

and autonomous control via a centralized dashboard shared among farmers and agricultural 

stakeholders.Field trials prove that the system cuts water and fertilizer use by as much as 30% 
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compared to traditional methods while also improving yield consistency and fertility of soil. 

Further, the modular and scalable design accommodates varied crop varieties and weather 

conditions and can, therefore, be suitable for small as well as industrial-sized farms. This 

research not only confirms the performance effectiveness of AI–IoT convergence in precision 

agriculture but also underscores its potential to solve global issues with food security, 

resource limitation, and environmental sustainability. Through intelligent automation and 

ongoing optimization, the envisioned AI-driven IoT framework is an evolutionary leap 

towards sustainable smart farming systems, where data intelligence informs all farm 

decisions from soil to harvest. 

 

KEYWORDS: Precision Agriculture, IoT, Artificial Intelligence, Smart Irrigation, Fertilizer 

Management, Machine Learning, Sustainability. 

 

1. INTRODUCTION 

The twenty-first century is seeing an unprecedented intersection of digital revolution and 

agriculture. While the world's population keeps growing projected to reach more than 9.7 

billion by 2050 the world demand for food, water, and land is increasing at a pace 

unprecedented in history. Nevertheless, agriculture is confronted with a range of restraints, 

such as dwindling natural resources, uncertain climatic patterns, and the imperative of 

sustainable food production systems. Traditional farming, based predominantly on manuel 

observation and empirical decision-making, is increasingly incapable of addressing current 

food security and environmental sustainability requirements. The imperative to optimize 

resource utilization and productivity has driven the development of Precision Agriculture (PA) 

a technology-based model exploiting data analysis, sensing technologies, and automation for 

optimizing agriculture production. 

  

1.1 The Shift towards Intelligent Farming 

Traditional farming methods rely frequently on human judgment, experience, and fixed crop 

calendars. Although such methods have supported agricultural output for centuries, they do 

not take into consideration the high variability of soil environments, microclimate changes, 

and crop nutrient needs. The blanket application of water and fertilizer results in serious 

inefficiencies over-irrigation producing waterlogging and nutrient leaching, while under-

irrigation leads to crop stress and yield loss. Additionally, improper use of fertilizers also 

causes environmental degradation in the form of nitrate runoff, eutrophication, and soil 

pollution.To address these challenges, Precision Agriculture presents the concept of site-
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specific crop management (SSCM), where inputs such as irrigation and fertilizers are tailored 

according to localized conditions within a field. This is done by a combination of Internet of 

Things (IoT) sensors, Artificial Intelligence (AI) algorithms, and cloud-based analytics. The 

combination of these technologies provides a transition from reactive to predictive agriculture, 

allowing farmers to take decisions in real-time using data-driven insights to improve 

productivity while conserving natural resources. 

 

1.2 IoT in Data Collection in Agriculture 

IoT is the core of intelligent farming systems. IoT devices like soil moisture sensors, pH 

sensors, temperature sensors, humidity sensors, and nutrient sensors are installed over 

agricultural lands to gather constant streams of data. These sensors record spatial and 

temporal fluctuations in environment and soil conditions to produce high-resolution data sets 

needed for precision management.The gathered data is sent using wireless communication 

protocols such as Zigbee, LoRaWAN, NB-IoT, and 5G networks to cloud servers or edge 

devices for processing.IoT gateways do initial filtering and aggregation of sensor data before 

passing it on to central AI systems. With such networked connections, farmers have real-time 

access to their soil conditions, making it possible to intervene in a timely and maximize 

resource usage.For instance, soil moisture sensors installed at various depths can indicate 

differences in moisture levels in different root zones, making it possible to irrigate exactly 

where needed. Likewise, nutrient sensors can detect deficiency of nitrogen (N), phosphorus 

(P), and potassium (K), making it necessary to apply fertilizer site specifically. This level of 

granular detail makes static irrigation schedules dynamic, demand-driven systems. 

 

1.3 AI Integration for Smart Decision-Making 

Whereas IoT sensors furnish copious data, its true value is in its interpretation. Artificial 

Intelligence (AI) plays a critical role here. AI algorithms (such as machine learning (ML) and 

deep learning (DL) processes) take raw sensor data and derive meaningful patterns, 

correlations, and predictions. The AI algorithms can forecast irrigation requirements, 

calculate nutrient uptake, and even foresee plant stress resulting from water shortages, 

extreme temperatures, or insect attack.Some of the leading algorithms in smart agriculture 

include Random Forest (RF), Support Vector Machines (SVM), Artificial Neural Networks 

(ANN), and Long Short-Term Memory (LSTM) networks. The Random Forest algorithm is 

strong when classifying the type of soil and forecasting crop yield responses to varying levels 

of irrigation and fertilizers. LSTM networks, given their strong capability to process time-
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series data, are utilized to predict soil moisture patterns, rain probabilities, and 

evapotranspiration rates from past sensor measurements and weather conditions. 

Reinforcement Learning (RL) is proving to be a strong optimizer of irrigation and 

fertilization policies. RL agents learn over continuous feedback loops between field sensors 

and crop reactions, allowing adaptive control policies that get better over time. For example, 

an RL-based irrigation controller has the ability to adjust water delivery schedules 

dynamically depending on soil dryness, growth stage of plants, and expected rainfall, thus 

optimizing yield while minimizing waste. 

 

1.4 Smart Irrigation and Fertilizer Management Systems 

Irrigation and fertilization are two of the most important operations in agriculture. 

Agriculture accounts for more than 70% of global freshwater withdrawals, and fertilizer 

abuse is a serious environmental concern. Hence, intelligent irrigation and fertilizer 

management systems have to be developed for long-term sustainability.In an intelligent 

irrigation system, sensor data from soil moisture sensors, humidity sensors, and temperature 

sensors are processed by AI algorithms to calculate optimal irrigation timing and quantities. 

The irrigation system brought to life with automated pumps and solenoid valves may be 

operated remotely by means of a cloud-based dashboard or a mobile app. Sophisticated 

frameworks also include weather forecasting models based on satellite and meteorological 

data to forecast rainfall, evaporation, and temperature variations, further optimizing irrigation 

decisions.For the management of fertilizers, AI models analyze in-real-time soil nutrient 

levels and crop growth phase to determine the exact fertilizer dose needed. Variable Rate 

Technology integration enables differential application across zones of a field using GPS-

enabled actuators, resulting in uniform crop growth while reducing nutrient runoff. These 

IoT-AI-driven systems not only conserve water and fertilizer but also enhance soil health and 

crop resistance. 

 

1.5 Cloud and Edge Computing in Smart Farming 

The use of IoT sensors creates enormous amounts of data that must be processed, stored, and 

analyzed in an efficient manner. Cloud computing offers scalable infrastructure for data 

storage, advanced analytics, and machine learning model deployment. Farmers and 

agronomists receive access to insights via cloud-based dashboards that graphically represent 

critical metrics like soil health, crop status, and irrigation performance. Nevertheless, because 

of network latency and connectivity issues in rural places with far distances, edge computing 
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has come to the fore. Edge devices carry out localized data processing near the source on site 

so that real-time decision-making is possible with sporadic internet connection. A hybrid 

cloud–edge architecture provides high-speed responsiveness as well as long-term data 

analytics ability. This structure is critical to autonomous activities, like automatic control of 

irrigation or fertilizer injection, without the need for continuous human monitoring. 

 

1.6 System Architecture of the Postulated Framework 

The proposed AI-driven IoT framework in this research has four main layers: Perception 

Layer, Network Layer, Processing Layer, and Application Layer. Perception Layer: 

These are all the IoT devices and sensors that have been fielded. Sensors monitor soil 

parameters (moisture, pH, nutrients), environmental factors (temperature, humidity, sunlight), 

and crop health parameters (chlorophyll and leaf wetness). Sensors are the basis of the data 

acquisition system.  Network Layer: Data read from sensors are forwarded by low-power 

wireless networks like LoRa WAN or Zigbee to a central IoT gateway. The gateway 

maintains data integrity, does initial filtering, and sends data safely to the cloud. Processing 

Layer: The core of the system where AI and ML algorithms are run. The Random Forest 

classifier classifies soil and nutrient conditions; the LSTM model forecasts future irrigation 

requirements, and the Reinforcement Learning controller adjusts irrigation schedule and 

fertilizer amounts in real-time based on performance feedback. Application Layer: The 

results are then visualized on a simple-to-use dashboard that gives farmers actionable insights. 

Alerts and suggestions can be automatically pushed to mobile devices or coupled with 

actuator systems for autonomous irrigation and fertilization. This multilayer architecture 

guarantees modularity, scalability, and interoperability critical demands for deploying 

intelligent farming systems over various agricultural settings. 

 

1.7 Significance of Real-Time Monitoring and Automation 

Real-time monitoring is a characteristic feature of contemporary precision farming systems. 

Continuous data streams enable instant anomaly detection of sensor faults, irrigation faults, or 

nutrient imbalance. Through the use of predictive analytics, the system can also provide early 

warnings on impending drought stress or nutrient deficiencies before symptoms are visible. 

Automated control mechanisms guarantee prompt corrective measures, such as starting an 

irrigation cycle or varying fertilizer flow.The automation not only saves manual effort and 

operational expenses but also eliminates human error. For example, conventional irrigation 

scheduling tends to rely on farmers' subjective judgment of soil dryness, resulting in erratic 
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watering. In contrast, the AI–IoT-based irrigation systems provide objective, data-driven 

decisions according to quantitative parameters, providing uniform and effective water 

delivery. 

 

1.8 Environmental and Economic Impact 

The implementation of AI–IoT-based smart farm technologies has a strong environmental 

and economic impact. Water conservation is one of the immediate benefits, with research 

indicating a 25–40% reduction in water consumption compared to conventional practices. 

Precision fertilizer application reduces chemical runoff and soil deterioration, encouraging 

long-term soil fertility and biodiversity. From an economic perspective, enhanced use of 

inputs translates into lower operating costs and enhanced crop yield. Farmers realize higher 

margins because of increased efficiency, quality, and uniformity of crops. In addition, 

predictive analytics enable improved planning of markets through the prediction of yields and 

harvest dates, enabling synchronization with demand and pricing plans in the market. 

 

1.9 Research Motivation and Objectives 

The research motivation is in the bridge between theoretical smart farming models and their 

actual, scalable implementation in real-world agricultural environments. The main aims of 

the proposed research are: To develop and deploy an AI-driven IoT system for intelligent 

irrigation and fertilizer control that enables real-time monitoring and control. To use machine 

learning models like Random Forest, LSTM, and Reinforcement Learning for predictive and 

adaptive decision support. 

 

To compare the system performance in water savings, fertilizer use efficiency, crop yields, 

and environmental resilience. To develop a scalable and modular architecture that can be 

configured to accommodate a variety of crops and agro-climatic zones. 

 

2. Literature Review: 

The convergence of Artificial Intelligence (AI) and the Internet of Things (IoT) has emerged 

as a bedrock in revolutionizing conventional farming into a data-driven and intelligent 

platform. There are several research studies that have examined AI- and IoT-based methods 

for enhancing irrigation efficiency, fertilizer application, and crop monitoring. Most current 

systems are concentrating on disconnected functions instead of an integrated real-time 

platform with irrigation and fertilizer management. This part critically discusses recent trends 
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in research, the algorithms, methodologies, and shortcomings of current works within the 

field of precision agriculture. 

2.1 IoT-Enabled Precision Irrigation Systems 

Smart irrigation systems based on IoT have gained traction with their promise to lower water 

usage and enhance irrigation scheduling precision.Patel et al. (2025) created a neural 

network–informed irrigation model that utilized soil moisture and temperature sensors to 

maximize water usage with about 22% water savings over traditional scheduling strategies. 

Their research ensured the credibility of AI-based decision-making in real-time but did not 

incorporate integration with fertilizer management.In a similar fashion, Chen et al. (2024) 

suggested an LSTM-informed weather forecasting model incorporated within a smart 

irrigation controller. The system forecasted rain events and accordingly changed irrigation 

plans, resulting in enhanced water efficiency. The model was demanding in terms of 

computing capabilities and cloud dependence, which could be inappropriate for resource-

constrained farms.Zhou et al. (2024) described a hybrid IoT–cloud infrastructure that 

gathered soil moisture and evapotranspiration information from dispersed sensors. Their 

decision-support tool employed Random Forest regression to forecast irrigation requirements 

under fluctuating climate conditions. While the system enhanced responsiveness to changing 

weather, it did not have dynamic feedback control for fertilizer optimization. 

2.2 AI in Fertilizer Suggestion and Nutrient Planning 

Accurate management of soil nutrients is essential for sustainable agriculture. Conventional 

fertilization approaches are based on lab tests, which are inefficient and time-consuming. To 

counter this, predictive systems based on AI have been used to make site-specific nutrient 

delivery. Reddy et al. (2023) presented an IoT-based fertilizer recommendation system that 

incorporated cloud-based analysis to determine soil nutrient content and plant growth stage. 

Their study accounted for a yield boost of 15%, proving the efficacy of combining IoT with 

AI for nutrient management. Nevertheless, the lack of real-time decision-making constrained 

its sensitivity to varying field situations.Almeida et al. (2023) established a fuzzy logic-based 

fertilizer control system that was able to vary nutrient doses depending on pH and electrical 

conductivity (EC) values. The system was able to successfully reduce nutrient wastage but 

was only available for small-scale experimental fields because of limited scalability.Singh 

and Bhatia (2022) utilized a Reinforcement Learning (RL)-based fertilizer optimization 

model for use in greenhouse conditions. The RL agent learned optimal nutrient dosing 

through continuous feedback from crop yield and soil nutrient data. The approach 
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demonstrated strong adaptability but required extended training time and significant 

computational resources. 

2.3 Combined AI–IoT Frameworks for Integrated Farm Management 

During the last few years, scientists have tried to integrate irrigation and fertilization 

management into consolidated frameworks. Garcia et al. (2023) suggested an integrated IoT–

AI platform based on Support Vector Machines (SVM) for classifying soil condition and 

Decision Trees for controlling irrigation. The system attained effective water and fertilizer 

usage but did not have self-learning mechanisms to ensure long-term adaptability. Kumar et 

al. (2023) used a cloud-based IoT system that leveraged Convolutional Neural Networks 

(CNN) for analyzing crop images and LSTM models for scheduling irrigation. Though 

efficient in real-time monitoring, the reliance on cloud services introduced latency and 

connectivity issues in rural areas. Tan et al. (2022) established an edge–cloud hybrid system 

for precision agriculture. Their design combined Random Forest and Gradient Boosting 

models for control of irrigation and fertilizers. The system provided low latency and 

scalability but at the cost of higher hardware expense. Li and Zhang (2021) targeted sensor 

fusion and predictive modeling for precise irrigation. Adopting K-Nearest Neighbors (KNN) 

for soil moisture estimation and Naive Bayes for fertilizer identification, they realized 

moderate improvements in efficiency. But the system was non-adaptive to dynamic soil or 

weather variability. 

2.4 Research Gaps Identified 

From the above studies, several research gaps are evident:Lack of integrated real-time 

frameworks: Most models focus either on irrigation or fertilization independently, neglecting 

the interdependence of water and nutrient dynamics. Limited adaptability: Many systems rely 

on static or rule-based algorithms without continuous learning mechanisms to adapt to real-

time field variations.Cloud dependency: High reliance on cloud processing causes latency, 

especially in rural areas with limited internet access.Scalability and interoperability 

challenges: Heterogeneous sensor networks and non-standardized communication protocols 

hinder large-scale deployment.To overcome these gaps, the proposed research introduces a 

unified AI–IoT framework that integrates Random Forest, LSTM, and Reinforcement 

Learning algorithms for intelligent irrigation and fertilizer control. The paradigm focuses on 

real-time adjustability, cloud–edge hybrid computing, and learning based on feedback, 

achieving efficiency, scalability, and sustainability. 
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2.5 Comparative Summary of Related Studies 

S.No. Reference Title / Year 
Journal / 

Source 

Technology 

/ Algorithm 

Used 

Key Findings 
Drawbacks / 

Limitations 

1 
Patel et al. 

(2025) 

Neural 

Network-Based 

Smart Irrigation 

System 

Applied AI in 

Agriculture 

ANN, IoT 

Sensors 

22% reduction in 

water usage 

Lacked fertilizer 

integration 

2 
Chen et al. 

(2024) 

LSTM-Driven 

Weather 

Adaptive 

Irrigation 

Controller 

IEEE Access 

LSTM, 

Weather 

Forecasting 

Enhanced 

irrigation 

prediction 

accuracy 

High 

computational 

and cloud cost 

3 
Zhou et al. 

(2024) 

IoT–Cloud 

Hybrid 

Irrigation Model 

Computers 

and 

Electronics 

in 

Agriculture 

Random 

Forest 

Regression 

Improved 

irrigation 

scheduling using 

real-time data 

No fertilizer 

optimization 

4 
Reddy et al. 

(2023) 

IoT-Based 

Fertilizer 

Management 

Using Cloud 

Analytics 

Sensors and 

Systems 

Journal 

IoT, Data 

Analytics 

15% yield 

increase via 

nutrient 

optimization 

Not real-time 

adaptive 

5 
Garcia et al. 

(2023) 

Integrated IoT–

AI Crop 

Management 

Framework 

Agricultural 

Informatics 

SVM, 

Decision 

Trees 

Joint water and 

nutrient control 

Limited self-

learning capacity 

6 
Almeida et 

al. (2023) 

Fuzzy Logic 

Fertilizer 

Control System 

Journal of 

Precision 

Agriculture 

Fuzzy Logic 

Reduced 

fertilizer waste, 

improved EC 

stability 

Limited 

scalability 

7 
Kumar et al. 

(2023) 

CNN-LSTM 

Model for Smart 

Farming 

Sustainable 

Computing 

Journal 

CNN, 

LSTM 

Real-time image 

and irrigation 

analysis 

High latency in 

rural cloud setup 

8 

Singh & 

Bhatia 

(2022) 

Reinforcement 

Learning-Based 

Nutrient 

Optimization 

Expert 

Systems with 

Applications 

RL Agent, 

IoT Sensors 

Adaptive 

nutrient control 

via learning 

Long training 

time, complex 

tuning 

9 
Tan et al. 

(2022) 

Edge–Cloud 

Hybrid System 

for Precision 

Farming 

IEEE 

Internet of 

Things 

Journal 

RF, 

Gradient 

Boosting 

Low-latency 

control and 

scalability 

Increased 

hardware cost 

10 
Li & Zhang 

(2021) 

Sensor Fusion 

for Irrigation 

and Fertilizer 

Control 

Computers 

and 

Agriculture 

Engineering 

KNN, Naive 

Bayes 

Improved 

prediction 

accuracy 

Weak 

adaptability to 

changing climate 
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2.6 Summary of the Literature Review 

The examination of recent studies strongly proves that AI and IoT have become essential to 

realizing smart, sustainable, and efficient agriculture. The use of neural networks, LSTM 

models, and machine learning algorithms greatly contributed to the improvement of water 

and nutrient management. But system fragmentation irrigation and fertilization as distinct 

processes remains the limiting factor for overall precision agriculture system 

efficiency.Current frameworks tend to run under fixed rules and do not support real-time 

feedback loops to enable adaptive decision-making. Besides, most rely heavily on cloud 

computation, which leads to latency limitations undermining responsiveness in rural 

agricultural environments. Scalability, interoperability, and cost efficiency are still significant 

impediments to large-scale adoption.To overcome these constraints, the new AI-driven IoT 

framework pushes the frontier by integrating Random Forest for soil and nutrient mapping, 

LSTM for anticipatory irrigation scheduling, and Reinforcement Learning for real-time 

dynamic optimization. Through real-time sensor input, weather predictions, and crop reaction 

data, the framework enables adaptive, automated, and learning-based agricultural control 

systems. This method not only guarantees effective water and fertilizer usage, but also 

environmental sustainability and scalability across varied agricultural contexts.Therefore, the 

suggested system is an all-encompassing, integrated, and smart model that fills the current 

technology gaps—enabling a new generation of AI–IoT convergence-driven precision 

farming solutions. 

 

3. 3. Methodology 

3.1 Sensing Layer 

The Sensing Layer is the base of the system and is tasked with the real-time acquisition of 

data from the farm field. IoT-based sensors are deployed in various zones of the farm to 

collect vital environmental as well as soil parameters that influence crop growth and yield 

directly. These sensors continuously record data pertaining to soil moisture, temperature, 

humidity, pH value, electrical conductivity, and NPK (Nitrogen, Phosphorus, Potassium) 

nutrient values.Every one of these parameters is critical in sustaining crop health and 

maximizing irrigation and fertilizer timetables. The gathered data are sent to the higher layers 

via wireless protocols like LoRa, ZigBee, or Wi-Fi for analysis and decision-making.Key 

Sensing Parameters and Mathematical Representation. 
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S. 

No. 
Parameter Symbol Unit 

Optimal 

Range 

(for 

Wheat 

Crop) 

Formula/Computation Purpose 

1 Soil Moisture θ 
% 

(VWC) 
18 – 25% θ = (Vw / Vt) × 100 

Determines 

irrigation 

requirement. 

2 
Soil 

Temperature 
Ts °C 18 – 25°C 

Direct sensor 

measurement 

Affects nutrient 

uptake and 

microbial 

activity. 

3 Air Humidity H % RH 50 – 70% H = (e / es) × 100 

Influences 

transpiration rate 

and evaporation. 

4 Soil pH pH – 6.0 – 7.5 pH = –log[H⁺] 

Determines soil 

acidity/alkalinity 

affecting nutrient 

absorption. 

5 
Electrical 

Conductivity 
EC dS/m 

1 – 3 

dS/m 
EC = (1 / R) × (L / A) 

Indicates salinity 

level and soil 

fertility. 

6 Nitrogen N mg/kg 50 – 120 
Measured via 

colorimetric sensor 

Promotes leaf 

and stem growth. 

7 Phosphorus P mg/kg 30 – 90 
Spectrophotometric 

measurement 

Essential for root 

and seed 

development. 

8 Potassium K mg/kg 150 – 300 
Ion-selective electrode 

sensor 

Supports fruit 

quality and 

water regulation. 

 

Data Flow and Sensor Network Architecture 

The IoT sensor network operates in a distributed topology where each node represents a 

microcontroller-based sensing unit connected to one or more sensors. These nodes 

communicate wirelessly with a central gateway or edge computing unit, which aggregates 

and preprocesses data before transmitting it to the cloud.The communication is typically 

established via protocols like MQTT (Message Queuing Telemetry Transport) for lightweight 

data transfer or HTTP/REST APIs for structured communication. The sensing layer thus acts 

as the data foundation for AI models implemented in the data processing layer. 
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Date 

Soil 

Moisture 

(%) 

Soil 

Temp 

(°C) 

Air 

Humidity 

(%) 

pH 
EC 

(dS/m) 

N 

(mg/kg) 

P 

(mg/kg) 

K 

(mg/kg) 

01/08/2025 17.5 23.1 64 6.4 1.8 85 45 210 

05/08/2025 14.2 25.6 58 6.6 2.0 90 50 195 

09/08/2025 20.1 22.9 68 6.5 1.7 95 48 205 

13/08/2025 22.8 21.7 70 6.7 1.9 100 52 220 

17/08/2025 18.4 24.3 65 6.5 2.1 110 60 230 

 

Sample Data Representation (Field Measurements):These readings are processed by AI 

algorithms to predict future irrigation requirements and optimal fertilizer application. For 

instance, when soil moisture (θ) drops below 15%, the system triggers irrigation. Similarly, 

nutrient imbalance is detected when NPK readings deviate from their optimal ranges, 

prompting fertilizer correction. 

 

 

Fig 1: Level identification 

 

Computation Model for Irrigation Requirement 

The irrigation water requirement (IWR) can be estimated using the Crop Water Stress 

Index (CWSI) and Evapotranspiration (ETc) values: 

[IWR = (ET_c - P_e) × K_c], Where: ETc = Crop evapotranspiration (mm/day),Pe = 

Effective rainfall (mm/day),Kc = Crop coefficient.This formula helps the AI model estimate 

precise irrigation volumes based on soil and climatic data. 
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Nutrient Requirement Estimation 

The fertilizer dosage (Fd) can be estimated as: 

[F_d = \frac{(T_n - A_n)}{E_f}],Where:Tn = Target nutrient level (mg/kg),An = Actual 

nutrient level (mg/kg),Ef = Efficiency factor of fertilizer (typically 0.6–0.8).This equation 

ensures that the fertilizer dosage is adjusted dynamically based on real-time soil nutrient data, 

preventing over-application. 

 

3.2 Communication Layer 

The Communication Layer is the infrastructure of the envisioned AI-driven IoT system for 

Smart Irrigation and Fertilizer Management, which provides smooth, secure, and efficient 

data exchange between field-deployed sensor nodes, gateways, cloud servers, and end-user 

applications. It creates connection between the Sensing Layer and the Data Processing Layer, 

enabling real-time monitoring, analysis, and control.This layer uses LoRaWAN (Long Range 

Wide Area Network) and Wi-Fi modules for communication of sensor data to cloud 

platforms, whereas MQTT (Message Queuing Telemetry Transport) protocol provides 

lightweight, low-latency, and reliable data communication. 

 

A. Communication Architecture Overview 

The communication layer consists of three key elements:Sensor Nodes – Microcontrollers 

(e.g., ESP32, Arduino MKR WAN 1310) and wireless transceivers installed to gather 

information from sensors.Gateways – Consolidate data from multiple nodes and send them to 

the cloud through Wi-Fi or LoRaWAN.Cloud Server – Processes, stores, and receives data 

via MQTT protocols, allowing AI algorithms to process it in real time.The architecture is 

designed for low power consumption, high reliability, and scalability over large agricultural 

fields.B. Communication Technologies and Parameters 

 

B. Communication Technologies and Parameters 

S.No. Technology Range Data Rate 
Power 

Consumption 
Latency 

Typical 

Application 

1 LoRaWAN 2–15 km 0.3–50 kbps 
Very Low (≈ 

10–20 mW) 
~1–2 s 

Remote farms, 

long-range 

communication 

2 
Wi-Fi (IEEE 

802.11) 
100–200 m 1–100 Mbps 

High (≈ 300–

500 mW) 
< 100 ms 

Local data transfer 

near base station 

3 
MQTT 

Protocol 
– 

Lightweight 

packet 
< 10 mW < 50 ms 

Cloud 

communication, 

real-time telemetry 
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C. MQTT-Based Data Transmission 

The MQTT protocol is the core communication mechanism between devices and the cloud. It 

follows a publish–subscribe model:Publishers (sensor nodes) send data to specific 

topics.Subscribers (cloud or dashboards) receive data by subscribing to those topics.The 

Broker (MQTT server) manages message routing and ensures reliable delivery.The system 

uses the following mathematical model to estimate data transmission efficiency (η): [\eta = 

\frac{S_d}{S_t} \times 100] Where: ( S_d ) = Successfully delivered packets ( S_t ) = Total 

packets transmitted.High η values (>95%) indicate stable and efficient network 

communication. 

 

D. Key Communication Variables 

Variable Symbol Unit Formula/Description 
Typical 

Value 
Significance 

Transmission 

Power 
Pt dBm 

Set by transceiver 

module 

+14 dBm 

(LoRa) 

Determines 

signal strength 

and coverage 

Signal-to-

Noise Ratio 
SNR dB 

SNR = 10 × 

log₁₀(Psignal / Pnoise) 
7–12 dB 

Indicates signal 

quality and 

reliability 

Packet 

Delivery Ratio 
PDR % 

PDR = (Packets 

Received / Packets 

Sent) × 100 

96–99% 

Measures 

communication 

reliability 

Data 

Throughput 
T kbps 

T = (Packet Size × 

Packets/sec) / 1000 

25–40 kbps 

(LoRa) 

Defines real-

time data 

capacity 

Latency L ms 
L = (tresponse – 

trequest) 
50–200 ms 

Critical for real-

time control 

Energy 

Efficiency 
Eeff mJ/bit Eeff = (P × t) / D 0.02 mJ/bit 

Optimizes 

sensor power 

consumption 

 

E. Analytical Model for Network Latency 

Network latency depends on propagation delay, transmission delay, and processing delay: 

[L = \frac{D}{V} + \frac{S}{B} + P_d] Where: ( L ) = Total latency (ms), ( D ) = Distance 

(m), ( V ) = Signal velocity (≈ 3 × 10⁸ m/s),( S ) = Packet size (bits),( B ) = Bandwidth 

(bps),( P_d ) = Processing delay (ms).This equation allows precise estimation of total 

communication delay, critical for time-sensitive irrigation control commands. 
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3.3 AI Processing Layer 

The AI Processing Layer is the analysis hub of the envisioned AI-driven IoT Framework for 

Smart Irrigation and Fertilizer Management. It converts raw sensor data gathered by the 

Sensing Layer and passed through the Communication Layer into actionable insights. 

Applying a mixture of Random Forest Regression (RFR), Long Short-Term Memory (LSTM) 

networks, and Reinforcement Learning (RL) agents, this layer executes real-time predictive 

analysis, forecasting, and decision optimization on irrigation scheduling and fertilizer 

management. 

 

A. AI-Based Decision Architecture Overview 

The pipeline for data processing includes: 

Data Preprocessing – Cleaning, normalization, and aggregation of sensor data (moisture, pH, 

NPK, humidity, etc.).Feature Extraction – Choosing specific parameters like soil temperature, 

rainfall record, evapotranspiration (ET), and nutrient indices.Model Execution – Applying 

machine learning (RFR), deep learning (LSTM), and adaptive learning (RL) 

algorithms.Prediction and Control – Creating real-time irrigation and fertilizer control 

commands.This layer runs in hybrid mode — balancing cloud computing for intensive AI 

work and edge computing for site-based control decisions. 

 

B. Key AI Models and Their Functional Roles 

Algorithm Function Input Variables Output Model Accuracy 

Random Forest 

Regression (RFR) 

Predicts soil 

moisture 

retention and 

fertilizer 

absorption 

efficiency 

Soil moisture 

(SM), NPK, pH, 

temperature, 

humidity 

Predicted soil 

moisture content 

(%) 

94.5% (R²) 

LSTM Neural 

Network 

Forecasts short-

term weather and 

crop water 

demand 

Historical rainfall, 

temperature, 

humidity, 

evapotranspiration 

(ET) 

Forecasted water 

demand (L/day) 
92.3% 

Reinforcement 

Learning (RL) 

Optimizes 

irrigation and 

nutrient supply 

dynamically 

Real-time soil 

moisture, growth 

stage, rainfall 

forecast 

Optimal 

irrigation volume 

and fertilizer rate 

95.8% reward-

based 

convergence 
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C. Random Forest Regression (RFR) Model 

The RFR model uses multiple decision trees to predict soil moisture and nutrient absorption 

by averaging predictions from each tree.The general equation for Random Forest prediction: 

[\hat{y} = \frac{1}{N} \sum_{i=1}^{N} T_i(X)] Where: ( \hat{y} ): Predicted soil moisture 

(%), ( N ): Number of trees,( T_i(X) ): Prediction from the i-th tree for feature vector 

( X ).The RFR model uses mean squared error (MSE) as its performance metric:[MSE = 

\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2].An MSE below 0.02 indicates high 

prediction accuracy in field tests. 

 

D. LSTM Model for Weather and Water Demand Forecasting 

The LSTM (Long Short-Term Memory) model captures temporal dependencies in 

environmental data to forecast weather patterns and crop water demand.LSTM 

Mathematical Representation: 

[h_t = f(W_h \cdot h_{t-1} + W_x \cdot x_t + b)] 

Where:( h_t ): Hidden state at time t, ( x_t ): Input features (rainfall, humidity, temperature), 

( W_h, W_x ): Weight matrices, ( b ): Bias vector, ( f ): Activation function (tanh or ReLU) 

Water Demand Estimation Formula (based on ET method): 

[WD = K_c \times ET_0 \times A] 

Where: ( K_c ): Crop coefficient (varies with crop type), ( ET_0 ): Reference 

evapotranspiration (mm/day), ( A ): Field area (m²). 

Example:For a maize crop (( K_c = 1.15 )), ( ET_0 = 5.2 , mm/day ), and ( A = 1500 , m² ): 

[WD = 1.15 \times 5.2 \times 1500 = 8970 , L/day] 

E. Reinforcement Learning (RL) for Irrigation Optimization 

The Reinforcement Learning agent learns from continuous feedback to optimize water and 

fertilizer use. The agent’s goal is to maximize cumulative reward (R) based on crop growth 

response and resource conservation.Reward Function: 

[R = \alpha (Y/Y_{max}) - \beta (W/W_{max}) - \gamma (F/F_{max})] 

Where: ( Y ): Current yield, ( W ): Water used, ( F ): Fertilizer used, ( \alpha, \beta, \gamma ): 

Weighting factors for efficiency and sustainability.The agent adjusts irrigation (( I_t )) and 

fertilizer dosage (( F_t )) at each time step: 

[I_{t+1} = I_t + \Delta I; \quad F_{t+1} = F_t + \Delta F] 

3.4 Actuation Layer 

The Actuation Layer is the execution and command unit of the AI-driven IoT platform for 

intelligent irrigation and fertilizer control. It fills in the gap between digital intelligence and 
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physical action by converting AI model predictions into accurate mechanical reactions mostly 

via Raspberry Pi-driven actuators, solenoid valves, and nutrient pumps. After the AI 

Processing Layer determines the best irrigation schedule and fertilizer blend, the Actuation 

Layer adjusts water flow, fertilizer rate, and distribution timing dynamically to accommodate 

real-time crop demand.This layer makes field-level operations energy-efficient, responsive, 

and data-coordinated with continuous environmental change, ensuring minimum waste and 

soil-crop equilibrium. The control logic is implemented through Python-based automation 

scripts and IoT middleware, coupled with Raspberry Pi GPIO interfaces for actuator 

triggering. 

 

A. Functional Overview 

The Actuation Layer works within a closed-loop feedback system, receiving input commands 

from the AI Processing Layer and feeding back real-time feedback to the sensing layer for 

confirmation. The process adopts four important steps:AI Decision Input: AI models 

(Random Forest, LSTM, and RL Agent) produce irrigation volume (in liters) and fertilizer 

dose (in mg/L).Signal Transmission: Instructions are sent through MQTT protocol to the 

gateway device (Raspberry Pi).Execution: Raspberry Pi activates solenoid valves and nutrient 

pumps according to PWM (Pulse Width Modulation) signals.Feedback: Flow and nutrient 

sensors verify operation efficiency and return updated values for next iteration learning. 

 

B. Key Control Variables and Operational Parameters 

Variable Symbol Unit Description Typical Range Formula / Calculation 

Irrigation flow rate ( Q_w ) L/min 

Volume of water 

delivered to soil 

per unit time 

0.5 – 3.5 ( Q_w = A_v \times v ) 

Valve opening area ( A_v ) cm² 
Effective area of 

the solenoid valve 
0.2 – 2.0 

Controlled by PWM duty 

cycle 

Water pressure ( P_w ) kPa 

Determines flow 

velocity and 

uniformity 

100 – 300 ( P_w = \rho g h ) 

Fertilizer 

concentration 
( C_f ) mg/L 

Nutrient mix 

strength (NPK 

solution) 

150 – 500 
( C_f = \frac{m_f}{V_s} 

\times 1000 ) 

Nutrient pump 

speed 
( S_p ) RPM 

Controls rate of 

fertilizer injection 
500 – 2000 ( S_p = k_1 \times C_f ) 

Irrigation duration ( t_i ) min 
Total operation 

time per cycle 
10 – 45 ( t_i = \frac{V_w}{Q_w} ) 

Feedback error ( e(t) ) % 

Difference 

between target 

and actual soil 

moisture 

0 – 10 ( e(t) = \frac{ 
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C. Control Logic and Equations 

The control algorithm running on Raspberry Pi uses PID (Proportional-Integral-Derivative) 

logic for fine-tuned adjustment of valve and pump operations. 

[u(t) = K_p e(t) + K_i \int_0^t e(\tau)d\tau + K_d \frac{de(t)}{dt}] Where: 

( u(t) ): Control signal (PWM duty cycle),( e(t) ): Moisture or nutrient deviation error, ( K_p, 

K_i, K_d ): Tuning constants determined through system calibration.This PID control ensures 

smooth valve modulation and accurate nutrient dosing, reducing overshoot or undersupply. 

 

D. Actuation Performance Metrics 

Parameter 
Before 

Optimization 

After AI-

Controlled 

Actuation 

Improvement (%) 

Water usage per 

hectare (L/day) 
1200 820 31.6% 

Fertilizer use 

efficiency 
68% 92% 35.3% 

Soil moisture 

uniformity 
75% 93% 24% 

System latency (s) 4.2 1.3 69% faster 

Energy 

consumption (W) 
55 39 29% reduction 

 

3.  Implementation 

The suggested AI-based IoT system for Smart Irrigation and Fertilizer Management was 

demonstrated as a prototype within a 1000 m² experimental field to analyze its actual 

working efficiency and real-world performance. The deployment consisted of interfacing 

sensor networks, communications infrastructure, AI processing blocks, and autonomous 

actuation devices to design an end-to-end autonomous farm system that could make decisions 

in real-time. 

 

4.1 Hardware Setup 

The hardware infrastructure was also created to measure environmental and soil factors, 

provide reliable data transmission, and implement AI-based irrigation and fertilization 

instructions. The principal elements were:Sensors:DHT22: Recorded temperature (°C) and 

relative humidity (%).YL-69 Soil Moisture Sensor: Measured volumetric water content (%) 

at various depths.pH Probe: Reported soil acidity or alkalinity (pH 5–8 range).NPK Sensor 

Modules: Recorded vital nutrients—nitrogen (N), phosphorus (P), and potassium (K) in 

mg/kg.Controller: Raspberry Pi 4 served as the master node, coordinating AI computation, 

http://www.ijarp.com/


                                                International Journal Advanced Research Publications  

www.ijarp.com                                                                                                                                                                                                                                    

  

19 

data logging, actuator control, and cloud communication.Actuators:Solenoid Valves: 

Regulated water distribution to various zones.DC Nutrient Pumps: Controlled fertilizer 

injection according to AI advice.Communication Modules:Wi-Fi: Provided high-speed local 

communication between sensors and gateway.MQTT Protocol: Provided lightweight, reliable 

transfer of sensor readings and actuation commands to/from the cloud. 

4.2 Software Framework 

The system software incorporated AI models, IoT middleware, and cloud platforms to 

provide seamless operation. Python: Used as the main programming language for sensor data 

collection, actuator control, and deployment of AI models.TensorFlow: Ran Random Forest 

Regression, LSTM, and Reinforcement Learning models for prediction and adaptive 

irrigation management.Node-RED: Controlled real-time data streams, message routing, and 

cloud-sensor connectivity.Firebase Cloud: Used as a centralized database, retaining historical 

data, AI forecasts, and operational logs, and provided remote monitoring and alerts. 

4.3 AI Model Training and Deployment 

The AI module was learned from historical weather and soil datasets of 2020–2024, with 

20,000 records of evapotranspiration, rainfall, humidity, temperature, NPK, pH, and soil 

moisture Missing values were imputed, and all sensor measurements were normalized to 

maintain consistency. Model Training:Random Forest Regression (RFR) predicted nutrient 

uptake and soil moisture retention.LSTM Networks predicted short-term weather and crop 

water demand.Reinforcement Learning Agent learned to optimize irrigation and fertilizer 

schedules based on the cumulative feedback of rainfall predictions, crop growth, and soil 

moisture.Data Validation: With a 70:30 train-test split, models reported predictive accuracy 

of 94.5% (RFR), 92.3% (LSTM), and a cumulative 95.8% reward convergence 

(RL).Deployment: Trained models were implemented on the Raspberry Pi 4 for edge-based 

real-time inference, enabling autonomous functioning without the need for continuous cloud 

connectivity. 

4.4 Independent Operation 

After deployment, the system functioned in autonomous mode based on the following 

cycle:Data Collection: IoT sensors continuously monitored soil and environmental 

parameters at 15-minute intervals.Data Transmission: Sensor data was transmitted through 

MQTT to the Raspberry Pi and cloud simultaneously. Predictive Analytics:RFR predicted 

soil water retention and nutrient uptake.LSTM predicted short-term water need according to 

weather forecast.RL agent calculated the best irrigation time (minutes) and fertilizer level 

(mg/L) for every field zone.Actuation:Raspberry Pi sent commands to solenoid valves and 
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fertilizer pumps, varying water flow and fertilizer levels in real time.Feedback Loop:Soil 

moisture and nutrient levels were constantly read to confirm performance, providing 

feedback data to the RL agent to improve subsequent irrigation and fertilization policies. 

 

4.5 Operational Metrics 

Throughout the experimental phase, the system exhibited high gains in resource efficiency 

and crop health: 

Parameter 
Traditional 

Practice 

AI-IoT 

Autonomous 

System 

Improvement 

Water usage 

(L/day) 
1200 830 30.8% savings 

Fertilizer use 

efficiency (%) 
68 92 35% increase 

Soil moisture 

uniformity (%) 
75 94 25% improvement 

Manual 

intervention 

(hours/day) 

3 0.5 83% reduction 

Crop yield 

(kg/1000 m²) 
120 155 29% increase 

 

5. RESULTS AND DISCUSSION 

The experimental evaluation of the proposed AI-powered IoT framework for Smart Irrigation 

and Fertilizer Management was conducted on a 1000 m² experimental field to validate its 

performance, accuracy, and operational efficiency. The system integrates a multi-layer 

architecture consisting of a Sensing Layer, Communication Layer, AI Processing Layer, and 

Actuation Layer, which collectively enable autonomous, real-time irrigation and nutrient 

management. 

 

5.1 Sensor Data Acquisition and Analysis 

The Sensing Layer deployed a network of IoT sensors including DHT22 for temperature and 

humidity, YL-69 for soil moisture, pH probes, and NPK sensor modules to capture critical 

agronomic parameters at regular intervals. Continuous monitoring allowed the collection of 

high-resolution temporal datasets encompassing soil moisture, temperature, air humidity, pH, 

electrical conductivity (EC), and nutrient content (N, P, K).Sample measurements over a 17-

day period indicated the following trends: 
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Date 

Soil 

Moisture 

(%) 

Soil 

Temp 

(°C) 

Air 

Humidity 

(%) 

pH 
EC 

(dS/m) 

N 

(mg/kg) 

P 

(mg/kg) 

K 

(mg/kg) 

01/08/2025 17.5 23.1 64 6.4 1.8 85 45 210 

05/08/2025 14.2 25.6 58 6.6 2.0 90 50 195 

09/08/2025 20.1 22.9 68 6.5 1.7 95 48 205 

13/08/2025 22.8 21.7 70 6.7 1.9 100 52 220 

17/08/2025 18.4 24.3 65 6.5 2.1 110 60 230 

 

The data demonstrated expected environmental interactions, such as an inverse correlation 

between soil moisture and temperature, with moisture decreasing as temperatures rose and 

increasing again following rainfall events. Nutrient concentrations gradually increased over 

time, highlighting the system capability to detect trends in nutrient absorption. 

 

 

Fig 2: Level indicator 2 

 

5.2 Irrigation and Nutrient Computation 

The system employed a combination of formula-based computations and AI predictions to 

determine irrigation and fertilizer requirements. Soil moisture thresholds triggered irrigation 

when volumetric water content (θ) fell below 15%, using the Crop Water Stress Index (CWSI) 

and evapotranspiration (ETc) to calculate the irrigation water requirement (IWR):[IWR = 

(ET_c - P_e) \times K_c] Where ETc represented crop evapotranspiration, Pe was effective 

rainfall, and Kc the crop coefficient. For instance, for a maize crop (Kc = 1.15) with ET₀ = 

5.2 mm/day over 1500 m², the system calculated WD = 8970 L/day, ensuring precise water 

allocation.Fertilizer dosing was computed dynamically using:[F_d = \frac{(T_n - 

A_n)}{E_f}] Where Tn is the target nutrient level, An the actual nutrient concentration, and 
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Ef the fertilizer efficiency factor (0.6–0.8). This formula allowed for fine-tuned nutrient 

application, minimizing over-fertilization while maintaining optimal crop growth. 

 

5.3 Communication Layer Performance 

Reliable data transmission was critical for real-time control. The Communication Layer 

employed LoRaWAN for long-range, low-power transmission, Wi-Fi for localized high-

bandwidth transfer, and MQTT protocols for message routing. The experimental data showed 

consistently high packet delivery ratios (PDR > 97%) and low latency (<200 ms), ensuring 

uninterrupted sensor-to-cloud communication. Sample network performance metrics were as 

follows: 

Date 
Packets 

Sent 

Packets 

Received 

Signal 

Strength 

(dBm) 

SNR 

(dB) 

Latency 

(ms) 

PDR 

(%) 

Throughput 

(kbps) 

01/08/2025 500 485 -92 10.5 185 97 30 

05/08/2025 520 508 -88 11.2 160 97.6 33 

17/08/2025 580 575 -91 11.3 150 99.1 35 

        

 

The low latency and high throughput supported real-time actuation and immediate feedback 

loops, critical for adaptive irrigation management. 

 

5.4 AI Model Predictions 

The AI Processing Layer integrated Random Forest Regression (RFR), LSTM networks, and 

Reinforcement Learning (RL) agents to forecast soil moisture, predict water demand, and 

control irrigation and fertilizer application.RFR captured R² = 0.94 in soil moisture and 

nutrient uptake prediction, accurately converting raw sensor data to actionable moisture 

profiles.LSTM extracted temporal patterns in environmental data, with MAE = 0.12 in 

forecasting short-term irrigation demand.RL agents adapted dynamically to irrigation volume 

and nutrient dosing, with consistent improvement in reward scores and water saving over 30 

episodes (up to 28% water reduction and 25% fertilizer optimization).The correlation 

between predicted water demand and actual irrigation efficiency settled around 99%, 

indicating the system's ability to convert AI predictions to accurate field-level control. 

 

5.5 System Overall Performance 

The combined AI–IoT system showed high adaptability to variability in the environment, 

adjusting to unexpected rainfall or soil moisture without intervention. Operational indicators 
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confirmed improvements in efficiency:Water savings: Around 28–31%, by virtue of AI 

scheduling and accurate irrigation.Fertilizer optimization: As much as 20–35% reduction in 

nutrient use inefficiency, minimizing environmental runoff and costs.Crop yield 

improvement: Wheat and tomato production increased by 19–29% owing to optimized water-

nutrient regimes.Operational cost saving: Around 22%, which was due to automation, less 

labor, and resource conservation.The system effectively combined real-time data acquisition, 

robust communication, forecasting AI analytics, and accurate actuation to provide a complete 

autonomous agricultural management setup. Feedback mechanisms between sensors, AI 

models, and actuators facilitated dynamic learning so that water and nutrient application 

responded dynamically to environmental and plant conditions.Experimental evidence 

suggests that AI-driven IoT systems yield quantifiable gains in precision agriculture. Random 

Forest Regression delivered robust soil and nutrient predictions, LSTM networks improved 

short-term irrigation prediction, and RL agents delivered adaptive optimization that improved 

repeated-cycle resource use efficiency. The integration of formula-driven irrigation and 

nutrient calculations with AI forecasts guaranteed precision and responsiveness, while 

MQTT-based communication provided robust real-time control. The field deployment 

confirmed the scalability and reliability of the proposed framework. It was able to cut human 

intervention by 83%, which established the possibility of complete autonomous operation. 

With accurate, data-based irrigation and fertilization, the system promotes sustainable 

agriculture, saving water, minimizing fertilizer loss, and maximizing crop yields. The 

outcomes verify that combining IoT sensing, effective communication, AI analytics, and 

actuated actuation constitutes a solid precision farming system with potential for real-world 

implementation. Experimental testing using a 1000 m² test farm validates not only the 

technology feasibility of the framework but also its scalability to be deployed in commercial 

farming for sustainable, smart, and high-production agriculture. 

 

6. CONCLUSION 

This research shows how the thoughtful integration of Artificial Intelligence and the Internet 

of Things can make farming more intuitive, efficient, and sustainable. By continuously 

listening to the field through sensors and learning from data patterns over time, the proposed 

AI-powered IoT framework moves agriculture away from guesswork and toward informed, 

real-time decision-making. Instead of applying water and fertilizers uniformly, the system 

responds to the actual needs of the soil and crops, much like an experienced farmer who 

understands subtle changes in the field but with far greater precision and consistency. The 
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experimental results clearly demonstrate practical benefits: significant savings in water and 

fertilizer usage, improved soil moisture uniformity, reduced manual labor, and noticeable 

gains in crop yield. These improvements are not just technical achievements; they translate 

directly into lower costs for farmers, reduced environmental impact, and more resilient food 

production systems. The use of Random Forest, LSTM, and Reinforcement Learning enables 

the system to adapt dynamically to changing weather conditions, soil variability, and crop 

growth stages, ensuring that decisions improve over time rather than remaining fixed or rule-

based. Equally important is the frameworks scalability and real-world relevance. Its modular, 

cloud–edge hybrid architecture makes it suitable for both smallholder farms and large-scale 

agricultural operations, even in regions with limited connectivity. By minimizing resource 

wastage and supporting sustainable practices, the system aligns well with global goals related 

to food security, water conservation, and environmental protection. In essence, this work 

demonstrates that smart farming is not just about advanced technology, but about using 

technology responsibly to support farmers, protect natural resources, and ensure long-term 

agricultural sustainability. As AI–IoT systems continue to evolve, they hold strong promise 

for shaping a future where farming decisions are smarter, more adaptive, and deeply 

connected to the real needs of the land and the people who depend on it. 
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