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ABSTRACT

The convergence of Artificial Intelligence (Al) and the Internet of Things (loT) is
transforming conventional agricultural practices into intelligent, data-driven systems that
enhance productivity and sustainability. This research presents a novel Al-powered loT
framework for smart irrigation and fertilizer management in precision farming, aimed at
optimizing resource utilization and improving crop yield in real time. The system envisioned
combines an 10T sensor network of high density to monitor important environmental and
agronomic variables in real time, including soil water content, nutrient levels, humidity,
temperature, and crop phenology. These streams are then analyzed using Al-powered
algorithms such as Random Forest, LSTM networks, and Reinforcement Learning models to
power predictive analysis and adaptive decision-making. Random Forest algorithm assists in
soil condition classification and estimation of nutrient deficits, whereas LSTM models predict
irrigation needs by examining time series patterns in soil moisture and weather readings.
Reinforcement Learning automatically tunes irrigation planning and fertilizer application
based on real-time feedback from soil sensors and vegetation response indicators to provide
maximum water and nutrient supply with minimum wastage. The combination of edge
analytics and cloud computing guarantees real-time processing of data, remote monitoring,
and autonomous control via a centralized dashboard shared among farmers and agricultural

stakeholders.Field trials prove that the system cuts water and fertilizer use by as much as 30%
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compared to traditional methods while also improving yield consistency and fertility of soil.
Further, the modular and scalable design accommodates varied crop varieties and weather
conditions and can, therefore, be suitable for small as well as industrial-sized farms. This
research not only confirms the performance effectiveness of Al-10T convergence in precision
agriculture but also underscores its potential to solve global issues with food security,
resource limitation, and environmental sustainability. Through intelligent automation and
ongoing optimization, the envisioned Al-driven 10T framework is an evolutionary leap
towards sustainable smart farming systems, where data intelligence informs all farm

decisions from soil to harvest.

KEYWORDS: Precision Agriculture, 10T, Artificial Intelligence, Smart Irrigation, Fertilizer

Management, Machine Learning, Sustainability.

1. INTRODUCTION

The twenty-first century is seeing an unprecedented intersection of digital revolution and
agriculture. While the world's population keeps growing projected to reach more than 9.7
billion by 2050 the world demand for food, water, and land is increasing at a pace
unprecedented in history. Nevertheless, agriculture is confronted with a range of restraints,
such as dwindling natural resources, uncertain climatic patterns, and the imperative of
sustainable food production systems. Traditional farming, based predominantly on manuel
observation and empirical decision-making, is increasingly incapable of addressing current
food security and environmental sustainability requirements. The imperative to optimize
resource utilization and productivity has driven the development of Precision Agriculture (PA)
a technology-based model exploiting data analysis, sensing technologies, and automation for

optimizing agriculture production.

1.1 The Shift towards Intelligent Farming

Traditional farming methods rely frequently on human judgment, experience, and fixed crop
calendars. Although such methods have supported agricultural output for centuries, they do
not take into consideration the high variability of soil environments, microclimate changes,
and crop nutrient needs. The blanket application of water and fertilizer results in serious
inefficiencies over-irrigation producing waterlogging and nutrient leaching, while under-
irrigation leads to crop stress and yield loss. Additionally, improper use of fertilizers also
causes environmental degradation in the form of nitrate runoff, eutrophication, and soil

pollution.To address these challenges, Precision Agriculture presents the concept of site-
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specific crop management (SSCM), where inputs such as irrigation and fertilizers are tailored
according to localized conditions within a field. This is done by a combination of Internet of
Things (1oT) sensors, Artificial Intelligence (Al) algorithms, and cloud-based analytics. The
combination of these technologies provides a transition from reactive to predictive agriculture,
allowing farmers to take decisions in real-time using data-driven insights to improve

productivity while conserving natural resources.

1.2 10T in Data Collection in Agriculture

loT is the core of intelligent farming systems. 10T devices like soil moisture sensors, pH
sensors, temperature sensors, humidity sensors, and nutrient sensors are installed over
agricultural lands to gather constant streams of data. These sensors record spatial and
temporal fluctuations in environment and soil conditions to produce high-resolution data sets
needed for precision management.The gathered data is sent using wireless communication
protocols such as Zigbee, LORaWAN, NB-IoT, and 5G networks to cloud servers or edge
devices for processing.loT gateways do initial filtering and aggregation of sensor data before
passing it on to central Al systems. With such networked connections, farmers have real-time
access to their soil conditions, making it possible to intervene in a timely and maximize
resource usage.For instance, soil moisture sensors installed at various depths can indicate
differences in moisture levels in different root zones, making it possible to irrigate exactly
where needed. Likewise, nutrient sensors can detect deficiency of nitrogen (N), phosphorus
(P), and potassium (K), making it necessary to apply fertilizer site specifically. This level of

granular detail makes static irrigation schedules dynamic, demand-driven systems.

1.3 Al Integration for Smart Decision-Making

Whereas 10T sensors furnish copious data, its true value is in its interpretation. Artificial
Intelligence (Al) plays a critical role here. Al algorithms (such as machine learning (ML) and
deep learning (DL) processes) take raw sensor data and derive meaningful patterns,
correlations, and predictions. The Al algorithms can forecast irrigation requirements,
calculate nutrient uptake, and even foresee plant stress resulting from water shortages,
extreme temperatures, or insect attack.Some of the leading algorithms in smart agriculture
include Random Forest (RF), Support Vector Machines (SVM), Artificial Neural Networks
(ANN), and Long Short-Term Memory (LSTM) networks. The Random Forest algorithm is
strong when classifying the type of soil and forecasting crop yield responses to varying levels

of irrigation and fertilizers. LSTM networks, given their strong capability to process time-
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series data, are utilized to predict soil moisture patterns, rain probabilities, and
evapotranspiration rates from past sensor measurements and weather conditions.
Reinforcement Learning (RL) is proving to be a strong optimizer of irrigation and
fertilization policies. RL agents learn over continuous feedback loops between field sensors
and crop reactions, allowing adaptive control policies that get better over time. For example,
an RL-based irrigation controller has the ability to adjust water delivery schedules
dynamically depending on soil dryness, growth stage of plants, and expected rainfall, thus

optimizing yield while minimizing waste.

1.4 Smart Irrigation and Fertilizer Management Systems

Irrigation and fertilization are two of the most important operations in agriculture.
Agriculture accounts for more than 70% of global freshwater withdrawals, and fertilizer
abuse is a serious environmental concern. Hence, intelligent irrigation and fertilizer
management systems have to be developed for long-term sustainability.In an intelligent
irrigation system, sensor data from soil moisture sensors, humidity sensors, and temperature
sensors are processed by Al algorithms to calculate optimal irrigation timing and quantities.
The irrigation system brought to life with automated pumps and solenoid valves may be
operated remotely by means of a cloud-based dashboard or a mobile app. Sophisticated
frameworks also include weather forecasting models based on satellite and meteorological
data to forecast rainfall, evaporation, and temperature variations, further optimizing irrigation
decisions.For the management of fertilizers, Al models analyze in-real-time soil nutrient
levels and crop growth phase to determine the exact fertilizer dose needed. Variable Rate
Technology integration enables differential application across zones of a field using GPS-
enabled actuators, resulting in uniform crop growth while reducing nutrient runoff. These
loT-Al-driven systems not only conserve water and fertilizer but also enhance soil health and

crop resistance.

1.5 Cloud and Edge Computing in Smart Farming

The use of 10T sensors creates enormous amounts of data that must be processed, stored, and
analyzed in an efficient manner. Cloud computing offers scalable infrastructure for data
storage, advanced analytics, and machine learning model deployment. Farmers and
agronomists receive access to insights via cloud-based dashboards that graphically represent
critical metrics like soil health, crop status, and irrigation performance. Nevertheless, because

of network latency and connectivity issues in rural places with far distances, edge computing
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has come to the fore. Edge devices carry out localized data processing near the source on site
so that real-time decision-making is possible with sporadic internet connection. A hybrid
cloud—edge architecture provides high-speed responsiveness as well as long-term data
analytics ability. This structure is critical to autonomous activities, like automatic control of

irrigation or fertilizer injection, without the need for continuous human monitoring.

1.6 System Architecture of the Postulated Framework

The proposed Al-driven IoT framework in this research has four main layers: Perception
Layer, Network Layer, Processing Layer, and Application Layer. Perception Layer:

These are all the 10T devices and sensors that have been fielded. Sensors monitor soil
parameters (moisture, pH, nutrients), environmental factors (temperature, humidity, sunlight),
and crop health parameters (chlorophyll and leaf wetness). Sensors are the basis of the data
acquisition system. Network Layer: Data read from sensors are forwarded by low-power
wireless networks like LoRa WAN or Zigbee to a central loT gateway. The gateway
maintains data integrity, does initial filtering, and sends data safely to the cloud. Processing
Layer: The core of the system where Al and ML algorithms are run. The Random Forest
classifier classifies soil and nutrient conditions; the LSTM model forecasts future irrigation
requirements, and the Reinforcement Learning controller adjusts irrigation schedule and
fertilizer amounts in real-time based on performance feedback. Application Layer: The
results are then visualized on a simple-to-use dashboard that gives farmers actionable insights.
Alerts and suggestions can be automatically pushed to mobile devices or coupled with
actuator systems for autonomous irrigation and fertilization. This multilayer architecture
guarantees modularity, scalability, and interoperability critical demands for deploying

intelligent farming systems over various agricultural settings.

1.7 Significance of Real-Time Monitoring and Automation

Real-time monitoring is a characteristic feature of contemporary precision farming systems.
Continuous data streams enable instant anomaly detection of sensor faults, irrigation faults, or
nutrient imbalance. Through the use of predictive analytics, the system can also provide early
warnings on impending drought stress or nutrient deficiencies before symptoms are visible.
Automated control mechanisms guarantee prompt corrective measures, such as starting an
irrigation cycle or varying fertilizer flow.The automation not only saves manual effort and
operational expenses but also eliminates human error. For example, conventional irrigation

scheduling tends to rely on farmers' subjective judgment of soil dryness, resulting in erratic
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watering. In contrast, the Al-loT-based irrigation systems provide objective, data-driven
decisions according to quantitative parameters, providing uniform and effective water

delivery.

1.8 Environmental and Economic Impact

The implementation of Al-loT-based smart farm technologies has a strong environmental
and economic impact. Water conservation is one of the immediate benefits, with research
indicating a 25-40% reduction in water consumption compared to conventional practices.
Precision fertilizer application reduces chemical runoff and soil deterioration, encouraging
long-term soil fertility and biodiversity. From an economic perspective, enhanced use of
inputs translates into lower operating costs and enhanced crop yield. Farmers realize higher
margins because of increased efficiency, quality, and uniformity of crops. In addition,
predictive analytics enable improved planning of markets through the prediction of yields and

harvest dates, enabling synchronization with demand and pricing plans in the market.

1.9 Research Motivation and Objectives

The research motivation is in the bridge between theoretical smart farming models and their
actual, scalable implementation in real-world agricultural environments. The main aims of
the proposed research are: To develop and deploy an Al-driven 10T system for intelligent
irrigation and fertilizer control that enables real-time monitoring and control. To use machine
learning models like Random Forest, LSTM, and Reinforcement Learning for predictive and

adaptive decision support.

To compare the system performance in water savings, fertilizer use efficiency, crop yields,
and environmental resilience. To develop a scalable and modular architecture that can be

configured to accommodate a variety of crops and agro-climatic zones.

2. Literature Review:

The convergence of Atrtificial Intelligence (Al) and the Internet of Things (1oT) has emerged
as a bedrock in revolutionizing conventional farming into a data-driven and intelligent
platform. There are several research studies that have examined Al- and loT-based methods
for enhancing irrigation efficiency, fertilizer application, and crop monitoring. Most current
systems are concentrating on disconnected functions instead of an integrated real-time

platform with irrigation and fertilizer management. This part critically discusses recent trends
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in research, the algorithms, methodologies, and shortcomings of current works within the
field of precision agriculture.

2.1 1oT-Enabled Precision Irrigation Systems

Smart irrigation systems based on IoT have gained traction with their promise to lower water
usage and enhance irrigation scheduling precision.Patel et al. (2025) created a neural
network—informed irrigation model that utilized soil moisture and temperature sensors to
maximize water usage with about 22% water savings over traditional scheduling strategies.
Their research ensured the credibility of Al-based decision-making in real-time but did not
incorporate integration with fertilizer management.In a similar fashion, Chen et al. (2024)
suggested an LSTM-informed weather forecasting model incorporated within a smart
irrigation controller. The system forecasted rain events and accordingly changed irrigation
plans, resulting in enhanced water efficiency. The model was demanding in terms of
computing capabilities and cloud dependence, which could be inappropriate for resource-
constrained farms.Zhou et al. (2024) described a hybrid loT—cloud infrastructure that
gathered soil moisture and evapotranspiration information from dispersed sensors. Their
decision-support tool employed Random Forest regression to forecast irrigation requirements
under fluctuating climate conditions. While the system enhanced responsiveness to changing
weather, it did not have dynamic feedback control for fertilizer optimization.

2.2 Al in Fertilizer Suggestion and Nutrient Planning

Accurate management of soil nutrients is essential for sustainable agriculture. Conventional
fertilization approaches are based on lab tests, which are inefficient and time-consuming. To
counter this, predictive systems based on Al have been used to make site-specific nutrient
delivery. Reddy et al. (2023) presented an loT-based fertilizer recommendation system that
incorporated cloud-based analysis to determine soil nutrient content and plant growth stage.
Their study accounted for a yield boost of 15%, proving the efficacy of combining loT with
Al for nutrient management. Nevertheless, the lack of real-time decision-making constrained
its sensitivity to varying field situations.Almeida et al. (2023) established a fuzzy logic-based
fertilizer control system that was able to vary nutrient doses depending on pH and electrical
conductivity (EC) values. The system was able to successfully reduce nutrient wastage but
was only available for small-scale experimental fields because of limited scalability.Singh
and Bhatia (2022) utilized a Reinforcement Learning (RL)-based fertilizer optimization
model for use in greenhouse conditions. The RL agent learned optimal nutrient dosing

through continuous feedback from crop yield and soil nutrient data. The approach
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demonstrated strong adaptability but required extended training time and significant
computational resources.

2.3 Combined Al-1oT Frameworks for Integrated Farm Management

During the last few years, scientists have tried to integrate irrigation and fertilization
management into consolidated frameworks. Garcia et al. (2023) suggested an integrated 1oT—
Al platform based on Support Vector Machines (SVM) for classifying soil condition and
Decision Trees for controlling irrigation. The system attained effective water and fertilizer
usage but did not have self-learning mechanisms to ensure long-term adaptability. Kumar et
al. (2023) used a cloud-based 10T system that leveraged Convolutional Neural Networks
(CNN) for analyzing crop images and LSTM models for scheduling irrigation. Though
efficient in real-time monitoring, the reliance on cloud services introduced latency and
connectivity issues in rural areas. Tan et al. (2022) established an edge—cloud hybrid system
for precision agriculture. Their design combined Random Forest and Gradient Boosting
models for control of irrigation and fertilizers. The system provided low latency and
scalability but at the cost of higher hardware expense. Li and Zhang (2021) targeted sensor
fusion and predictive modeling for precise irrigation. Adopting K-Nearest Neighbors (KNN)
for soil moisture estimation and Naive Bayes for fertilizer identification, they realized
moderate improvements in efficiency. But the system was non-adaptive to dynamic soil or
weather variability.

2.4 Research Gaps ldentified

From the above studies, several research gaps are evident:Lack of integrated real-time
frameworks: Most models focus either on irrigation or fertilization independently, neglecting
the interdependence of water and nutrient dynamics. Limited adaptability: Many systems rely
on static or rule-based algorithms without continuous learning mechanisms to adapt to real-
time field variations.Cloud dependency: High reliance on cloud processing causes latency,
especially in rural areas with limited internet access.Scalability and interoperability
challenges: Heterogeneous sensor networks and non-standardized communication protocols
hinder large-scale deployment.To overcome these gaps, the proposed research introduces a
unified Al-loT framework that integrates Random Forest, LSTM, and Reinforcement
Learning algorithms for intelligent irrigation and fertilizer control. The paradigm focuses on
real-time adjustability, cloud—edge hybrid computing, and learning based on feedback,

achieving efficiency, scalability, and sustainability.
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2.5 Comparative Summary of Related Studies

Journal /Technology Drawbacks /
S.No. [Reference |[Title/ Year / Algorithm|(Key Findings Lo
Source Limitations
Used
Neural
1 Patel et al.[Network-Based |Applied Al inJANN, 10T[22% reduction in|Lacked fertilizer
(2025) Smart Irrigation|Agriculture [Sensors water usage integration
System
LSTM-Driven Enhanced
Chen et al VWeather LSTM, irrigation High
2 ‘|Adaptive IEEE Access |Weather gatic computational
(2024) T . |prediction
Irrigation Forecasting and cloud cost
accuracy
Controller
Computers Improved
loT—Cloud and Random improt -
Zhou et al. ; . irrigation No fertilizer
3 Hybrid Electronics ([Forest . . L
(2024) A . . scheduling usingloptimization
Irrigation Model fin Regression .
. real-time data
Agriculture
loT-Based 15% yield
Fertilizer Sensors and : . i
Reddy et al. loT, Datalincrease via|Not real-time
4 Management  |Systems . ; .
(2023) . Analytics  |nutrient adaptive
Using Cloud|Journal optimization
Analytics P
Integrated 10T— SVM
Garcia et al.[Al Crop|Agricultural - Joint water and|Limited self-
5 . |Decision . X .
(2023) Management  |Informatics Trees nutrient control |learning capacity
Framework
Fuzzy  LogiclJournal  of Reduced
Almeida  et|_"22Y g - ._[fertilizer waste,|Limited
6 Fertilizer Precision Fuzzy Logic|. -
al. (2023) : improved EC|scalability
Control System |Agriculture 1
stability
;o cafUNLSTE | Fsanatie oy, Resime ety ey i
(2023) . PUting ) stm Mg rural cloud setup
Farming Journal analysis
Singh & Relnfc_Jrcement Expert Adaptive Long training
) Learning-Based .. |RL  Agent, . -
8 Bhatia . Systems with nutrient controlltime,  complex
(2022) N“t.”e!“ . Applications loT Sensors via learning tuning
Optimization
Edge—Cloud IEEE
Tan et al|Hybrid System(Internet ofRF’ . Low-latency Increased
9 o ) Gradient control and
(2022) for Precision{Things ; . hardware cost
. Boosting  [scalability
Farming Journal
Sensor  Fusion|Computers
Li & Zhang|for Irrigationfand KNN, Naivelmpr.ov.ed Weak -
10 . . prediction adaptability  to
(2021) and  Fertilizer|Agriculture [Bayes i .
. . accuracy changing climate
Control Engineering
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2.6 Summary of the Literature Review

The examination of recent studies strongly proves that Al and loT have become essential to
realizing smart, sustainable, and efficient agriculture. The use of neural networks, LSTM
models, and machine learning algorithms greatly contributed to the improvement of water
and nutrient management. But system fragmentation irrigation and fertilization as distinct
processes remains the limiting factor for overall precision agriculture system
efficiency.Current frameworks tend to run under fixed rules and do not support real-time
feedback loops to enable adaptive decision-making. Besides, most rely heavily on cloud
computation, which leads to latency limitations undermining responsiveness in rural
agricultural environments. Scalability, interoperability, and cost efficiency are still significant
impediments to large-scale adoption.To overcome these constraints, the new Al-driven loT
framework pushes the frontier by integrating Random Forest for soil and nutrient mapping,
LSTM for anticipatory irrigation scheduling, and Reinforcement Learning for real-time
dynamic optimization. Through real-time sensor input, weather predictions, and crop reaction
data, the framework enables adaptive, automated, and learning-based agricultural control
systems. This method not only guarantees effective water and fertilizer usage, but also
environmental sustainability and scalability across varied agricultural contexts.Therefore, the
suggested system is an all-encompassing, integrated, and smart model that fills the current
technology gaps—enabling a new generation of Al-I0T convergence-driven precision

farming solutions.

3. 3. Methodology

3.1 Sensing Layer

The Sensing Layer is the base of the system and is tasked with the real-time acquisition of
data from the farm field. loT-based sensors are deployed in various zones of the farm to
collect vital environmental as well as soil parameters that influence crop growth and yield
directly. These sensors continuously record data pertaining to soil moisture, temperature,
humidity, pH value, electrical conductivity, and NPK (Nitrogen, Phosphorus, Potassium)
nutrient values.Every one of these parameters is critical in sustaining crop health and
maximizing irrigation and fertilizer timetables. The gathered data are sent to the higher layers
via wireless protocols like LoRa, ZigBee, or Wi-Fi for analysis and decision-making.Key

Sensing Parameters and Mathematical Representation.
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Optimal
S Range
N' Parameter [Symbol [Unit (for Formula/Computation|Purpose
0.
Wheat
Crop)
% Determines
1 Soil Moisture [0 18 —25% |6 = (Vw / Vt) x 100 irrigation
(VWC) ©
requirement.
Affects nutrient
9 Soil Te °C 18— 25°C Direct sensor uptake _ and
Temperature measurement microbial
activity.
Influences
3 Air Humidity |H % RH [50-70% [H=(e/es)x 100 transpiration rate
and evaporation.
Determines soil
. _ . acidity/alkalinity
4 Soil pH pH — 6.0-7.5 [pH =-log[H"] affecting nutrient
absorption.
. Indicates salinity|
5  [Electical dee hgm L= Sec=@/R)x(L/A) llevel and soil
Conductivity dS/m T
fertility.
5 Nitrogen N mglkg |50 — 120 Meas_ured . vialPromotes  leaf
colorimetric sensor and stem growth.
Spectrophotometric Essential for root
7 Phosphorus [P mg/kg [30-90 P P and seed
measurement
development.
) . Supports  fruit|
8 Potassium (K mg/kg |150 — 300 lon-selective - electrode quality and

SENsor

water regulation.

Data Flow and Sensor Network Architecture

The loT sensor network operates in a distributed topology where each node represents a

microcontroller-based sensing unit connected to one or more sensors. These nodes

communicate wirelessly with a central gateway or edge computing unit, which aggregates

and preprocesses data before transmitting it to the cloud.The communication is typically

established via protocols like MQTT (Message Queuing Telemetry Transport) for lightweight

data transfer or HTTP/REST APIs for structured communication. The sensing layer thus acts

as the data foundation for Al models implemented in the data processing layer.
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Soil Soil  |Air EC N p K
e T P Y P esim) - f(maika) [imarka) - [mako)
01/08/2025 |17.5 23.1 |64 6.4 |18 85 45 210
05/08/2025 (14.2 256 |58 6.6 |2.0 90 50 195
09/08/2025 (20.1 229 |68 6.5 |17 95 48 205
13/08/2025 |22.8 21.7 |0 6.7 |19 100 52 220
17/08/2025 |18.4 243 |65 6.5 |21 110 60 230

Sample Data Representation (Field Measurements):These readings are processed by Al
algorithms to predict future irrigation requirements and optimal fertilizer application. For
instance, when soil moisture (0) drops below 15%, the system triggers irrigation. Similarly,
nutrient imbalance is detected when NPK readings deviate from their optimal ranges,

prompting fertilizer correction.

E Soil Moisture (%) E Soil Temp (°C) Air Humidity (%) = pH
EEC (dS/m) E N (mg/kg) E P (mg/kg) EK (mg/kg)

17-08-2025 ==
15-08-2025

13-08-2025
11-08-2025
09-08-2025

07-08-2025
05-08-2025

03-08-2025
01-08-2025

0 100 200 300 400 500 600

Fig 1: Level identification

Computation Model for Irrigation Requirement

The irrigation water requirement (IWR) can be estimated using the Crop Water Stress
Index (CWSI) and Evapotranspiration (ETc) values:

[IWR = (ET ¢ - P_e) x K _c], Where: ETc = Crop evapotranspiration (mm/day),Pe =
Effective rainfall (mm/day),Kc = Crop coefficient.This formula helps the Al model estimate

precise irrigation volumes based on soil and climatic data.
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Nutrient Requirement Estimation

The fertilizer dosage (Fd) can be estimated as:

[F_d = \frac{(T_n - A_n)}{E_f}],Where:Tn = Target nutrient level (mg/kg),An = Actual
nutrient level (mg/kg),Ef = Efficiency factor of fertilizer (typically 0.6-0.8).This equation
ensures that the fertilizer dosage is adjusted dynamically based on real-time soil nutrient data,

preventing over-application.

3.2 Communication Layer

The Communication Layer is the infrastructure of the envisioned Al-driven loT system for
Smart Irrigation and Fertilizer Management, which provides smooth, secure, and efficient
data exchange between field-deployed sensor nodes, gateways, cloud servers, and end-user
applications. It creates connection between the Sensing Layer and the Data Processing Layer,
enabling real-time monitoring, analysis, and control.This layer uses LoORaWAN (Long Range
Wide Area Network) and Wi-Fi modules for communication of sensor data to cloud
platforms, whereas MQTT (Message Queuing Telemetry Transport) protocol provides

lightweight, low-latency, and reliable data communication.

A. Communication Architecture Overview

The communication layer consists of three key elements:Sensor Nodes — Microcontrollers
(e.g., ESP32, Arduino MKR WAN 1310) and wireless transceivers installed to gather
information from sensors.Gateways — Consolidate data from multiple nodes and send them to
the cloud through Wi-Fi or LoRaWAN.Cloud Server — Processes, stores, and receives data
via MQTT protocols, allowing Al algorithms to process it in real time.The architecture is
designed for low power consumption, high reliability, and scalability over large agricultural

fields.B. Communication Technologies and Parameters

B. Communication Technologies and Parameters

Power Typical
S.No. Technology [Range Data Rate Consumption Latency Application
Very Low (= Remote farms,
1 LoRaWAN  [2-15km |0.3-50 kbps 10-20 mW) ~1-2s Iong-range _
communication
Wi-Fi  (IEEE High (= 300- Local data transfer
2 802.11) 100-200 m/1-100 Mbps |5 mw) <100ms | oar base station
. . Cloud
3 MQTT — Lightweight <10 mW <50 ms communication,
Protocol packet .
real-time telemetry
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C. MQTT-Based Data Transmission

The MQTT protocol is the core communication mechanism between devices and the cloud. It
follows a publish—subscribe model:Publishers (sensor nodes) send data to specific
topics.Subscribers (cloud or dashboards) receive data by subscribing to those topics.The
Broker (MQTT server) manages message routing and ensures reliable delivery.The system
uses the following mathematical model to estimate data transmission efficiency (n): [\eta =
\frac{S_d}{S_t} \times 100] Where: ( S_d ) = Successfully delivered packets ( S_t ) = Total
packets transmitted.High n values (>95%) indicate stable and efficient network

communication.

D. Key Communication Variables

Variable Symbol Unit Formula/Description\-Zﬁﬁal Significance
- . Determines
Transmission Pt dBm Set by transceiver|+14 dBmsignaI strength

Power module (LoRa)
and coverage
. _ Indicates signal
Signal-to- —|o\ o dB SNR = 10 Xo o4 |quality  and
Noise Ratio logio(Psignal / Pnoise) T
reliability
Packet PDR =  (Packets Measures
Delivery Ratio PDR % Received / Packets|96-99% communication
y Sent) x 100 reliability
Data - KbDS T = (Packet Size x|25-40 kbpsﬁr?]fénes rg:tlé
Throughput P Packets/sec) / 1000 |(LoRa) .
capacity
Latency L ms L = (tresponse ~150-200 ms C_:rltlcal for real-
trequest) time control
Optimizes
Energy . _ .
- Eeff mJ/bit Eeff=(Pxt)/D 0.02 mJ/bit [sensor  power
Efficiency .
consumption

E. Analytical Model for Network Latency

Network latency depends on propagation delay, transmission delay, and processing delay:
[L =\frac{D}{V} + \frac{S}{B} + P_d] Where: ( L ) = Total latency (ms), ( D ) = Distance
(m), ( V) = Signal velocity (= 3 x 10® m/s),( S ) = Packet size (bits),( B ) = Bandwidth
(bps),( P_d ) = Processing delay (ms).This equation allows precise estimation of total

communication delay, critical for time-sensitive irrigation control commands.
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3.3 Al Processing Layer

The Al Processing Layer is the analysis hub of the envisioned Al-driven 10T Framework for
Smart Irrigation and Fertilizer Management. It converts raw sensor data gathered by the
Sensing Layer and passed through the Communication Layer into actionable insights.
Applying a mixture of Random Forest Regression (RFR), Long Short-Term Memory (LSTM)
networks, and Reinforcement Learning (RL) agents, this layer executes real-time predictive
analysis, forecasting, and decision optimization on irrigation scheduling and fertilizer

management.

A. Al-Based Decision Architecture Overview

The pipeline for data processing includes:

Data Preprocessing — Cleaning, normalization, and aggregation of sensor data (moisture, pH,
NPK, humidity, etc.).Feature Extraction — Choosing specific parameters like soil temperature,
rainfall record, evapotranspiration (ET), and nutrient indices.Model Execution — Applying
machine learning (RFR), deep learning (LSTM), and adaptive learning (RL)
algorithms.Prediction and Control — Creating real-time irrigation and fertilizer control
commands.This layer runs in hybrid mode — balancing cloud computing for intensive Al

work and edge computing for site-based control decisions.

B. Key Al Models and Their Functional Roles

Algorithm Function Input Variables |Output Model Accuracy
Predicts soil
moisture Soil moisture Predicted soil
Random  Forest|retention and|(SM), NPK, pH,moisture content94.5% (R?)
Regression (RFR) [fertilizer temperature, %) '
absorption humidity
efficiency

Historical rainfall,

Forecasts short-
temperature,

LSTM Neuraljterm weather and Forecasted water

L 0
Network crop waterhum'd'ty’ ... |demand (L/day) 92.3%
demand evapotranspiration
(ET)
. Optimizes Real-time soil Optimal 95.8%  reward-
Reinforcement  |irrigation and|moisture, growth|.""" " .
; A . irrigation volumelbased
Learning (RL) nutrient  supply|stage, rainfall 1
) and fertilizer rate |convergence
dynamically forecast
www.ijarp.com (
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C. Random Forest Regression (RFR) Model

The RFR model uses multiple decision trees to predict soil moisture and nutrient absorption
by averaging predictions from each tree.The general equation for Random Forest prediction:
[\hat{y} = \frac{1}{N} \sum_{i=1}{N} T_i(X)] Where: ( \nat{y} ): Predicted soil moisture
(%), ( N ): Number of trees,( T_i(X) ): Prediction from the i-th tree for feature vector
( X ).The RFR model uses mean squared error (MSE) as its performance metric.[MSE =
\frac{1}{n} \sum_{i=1}*{n} (y_i - \nat{y_i})"2].An MSE below 0.02 indicates high
prediction accuracy in field tests.

D. LSTM Model for Weather and Water Demand Forecasting

The LSTM (Long Short-Term Memory) model captures temporal dependencies in
environmental data to forecast weather patterns and crop water demand.LSTM
Mathematical Representation:

[h_t=f(W_h\cdot h_{t-1} + W_x \cdot x_t + b)]

Where:( h_t ): Hidden state at time t, ( X_t ): Input features (rainfall, humidity, temperature),
(W_h, W_x): Weight matrices, ( b ): Bias vector, ( f): Activation function (tanh or ReLU)
Water Demand Estimation Formula (based on ET method):

[WD = K_c \times ET_0 \times A]

Where: ( K_c ): Crop coefficient (varies with crop type), ( ET_0 ): Reference
evapotranspiration (mm/day), ( A ): Field area (m2).

Example:For a maize crop (K _¢=1.15)), (ET_0=5.2, mm/day ), and ( A = 1500, m?):
[WD = 1.15 \times 5.2 \times 1500 = 8970, L/day]

E. Reinforcement Learning (RL) for Irrigation Optimization

The Reinforcement Learning agent learns from continuous feedback to optimize water and
fertilizer use. The agent’s goal is to maximize cumulative reward (R) based on crop growth
response and resource conservation.Reward Function:

[R =\alpha (Y/Y_{max}) - \beta (W/W_{max}) - \gamma (F/F_{max})]

Where: (Y ): Current yield, (W ): Water used, ( F): Fertilizer used, ( \alpha, \beta, \gamma ):
Weighting factors for efficiency and sustainability. The agent adjusts irrigation (( 1_t )) and
fertilizer dosage (( F_t)) at each time step:

[l {t+1} =1_t+\Delta I; \quad F_{t+1} = F_t + \Delta F]

3.4 Actuation Layer

The Actuation Layer is the execution and command unit of the Al-driven 10T platform for

intelligent irrigation and fertilizer control. It fills in the gap between digital intelligence and
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physical action by converting Al model predictions into accurate mechanical reactions mostly
via Raspberry Pi-driven actuators, solenoid valves, and nutrient pumps. After the Al
Processing Layer determines the best irrigation schedule and fertilizer blend, the Actuation
Layer adjusts water flow, fertilizer rate, and distribution timing dynamically to accommodate
real-time crop demand.This layer makes field-level operations energy-efficient, responsive,
and data-coordinated with continuous environmental change, ensuring minimum waste and
soil-crop equilibrium. The control logic is implemented through Python-based automation
scripts and 1oT middleware, coupled with Raspberry Pi GPIO interfaces for actuator

triggering.

A. Functional Overview

The Actuation Layer works within a closed-loop feedback system, receiving input commands
from the Al Processing Layer and feeding back real-time feedback to the sensing layer for
confirmation. The process adopts four important steps:Al Decision Input: Al models
(Random Forest, LSTM, and RL Agent) produce irrigation volume (in liters) and fertilizer
dose (in mg/L).Signal Transmission: Instructions are sent through MQTT protocol to the
gateway device (Raspberry Pi).Execution: Raspberry Pi activates solenoid valves and nutrient
pumps according to PWM (Pulse Width Modulation) signals.Feedback: Flow and nutrient
sensors verify operation efficiency and return updated values for next iteration learning.

B. Key Control Variables and Operational Parameters

Variable Symbol Unit Description Typical Range [Formula / Calculation
Volume of water

Irrigation flow rate [(Q_w) L/min delivered to soil|0.5-3.5 (Q w=A vitimesv)
per unit time

Valve opening areal( A_v) om? Effective area of 02-20 Controlled by PWM duty,
the solenoid valve cycle
Determines flow

\Water pressure (P_w) kPa velocity and|[100 — 300 (P_w=\rhogh)
uniformity

- Nutrient mix

Fertilizer ( C_f = \Mfrac{m_f}{V_s}

concentration (€ mg/L stren_gth (NPK|150 —500 \times 1000 )
solution)

Nutrient pump Controls rate of] _ .

speed (Sp) RPM fertilizer injection 500 - 2000 (S_p=k_1itimesC_f)

S . . . Total  operation L

Irrigation duration |(t_i) min time per cycle 10-45 (t_i=\frac{V_w}{Q w})
Difference
between target

0, — =

Feedback error (e®) Y% and  actual  soil 0-10 (e(t) = \frac{

moisture
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C. Control Logic and Equations

The control algorithm running on Raspberry Pi uses PID (Proportional-Integral-Derivative)
logic for fine-tuned adjustment of valve and pump operations.

[u(t) = K_pe(t) + K_i\int_0"t e(\tau)d\tau + K_d \frac{de(t)}{dt}] Where:

(‘u(t) ): Control signal (PWM duty cycle),( e(t) ): Moisture or nutrient deviation error, ( K_p,
K_i, K_d): Tuning constants determined through system calibration.This PID control ensures

smooth valve modulation and accurate nutrient dosing, reducing overshoot or undersupply.

D. Actuation Performance Metrics

Before After Al-
Parameter L Controlled Improvement (%)

Optimization :

Actuation

\Water usage per 0
hectare (L/day) 1200 820 31.6%
Fertilizer — uselsaq, 92% 35.3%
efficiency
So_ll _ m0|sture75% 93% 4%
uniformity
System latency (s) 4.2 1.3 69% faster
Energy 0 .
consumption (W) 55 39 29% reduction

3. Implementation

The suggested Al-based loT system for Smart Irrigation and Fertilizer Management was
demonstrated as a prototype within a 1000 m? experimental field to analyze its actual
working efficiency and real-world performance. The deployment consisted of interfacing
sensor networks, communications infrastructure, Al processing blocks, and autonomous
actuation devices to design an end-to-end autonomous farm system that could make decisions

in real-time.

4.1 Hardware Setup

The hardware infrastructure was also created to measure environmental and soil factors,
provide reliable data transmission, and implement Al-based irrigation and fertilization
instructions. The principal elements were:Sensors:DHT22: Recorded temperature (°C) and
relative humidity (%).YL-69 Soil Moisture Sensor: Measured volumetric water content (%)
at various depths.pH Probe: Reported soil acidity or alkalinity (pH 5-8 range).NPK Sensor
Modules: Recorded vital nutrients—nitrogen (N), phosphorus (P), and potassium (K) in

mg/kg.Controller: Raspberry Pi 4 served as the master node, coordinating Al computation,
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data logging, actuator control, and cloud communication.Actuators:Solenoid Valves:
Regulated water distribution to various zones.DC Nutrient Pumps: Controlled fertilizer
injection according to Al advice.Communication Modules:Wi-Fi: Provided high-speed local
communication between sensors and gateway.MQTT Protocol: Provided lightweight, reliable
transfer of sensor readings and actuation commands to/from the cloud.

4.2 Software Framework

The system software incorporated Al models, 10T middleware, and cloud platforms to
provide seamless operation. Python: Used as the main programming language for sensor data
collection, actuator control, and deployment of Al models.TensorFlow: Ran Random Forest
Regression, LSTM, and Reinforcement Learning models for prediction and adaptive
irrigation management.Node-RED: Controlled real-time data streams, message routing, and
cloud-sensor connectivity.Firebase Cloud: Used as a centralized database, retaining historical
data, Al forecasts, and operational logs, and provided remote monitoring and alerts.

4.3 Al Model Training and Deployment

The Al module was learned from historical weather and soil datasets of 2020—2024, with
20,000 records of evapotranspiration, rainfall, humidity, temperature, NPK, pH, and soil
moisture Missing values were imputed, and all sensor measurements were normalized to
maintain consistency. Model Training:Random Forest Regression (RFR) predicted nutrient
uptake and soil moisture retention.LSTM Networks predicted short-term weather and crop
water demand.Reinforcement Learning Agent learned to optimize irrigation and fertilizer
schedules based on the cumulative feedback of rainfall predictions, crop growth, and soil
moisture.Data Validation: With a 70:30 train-test split, models reported predictive accuracy
of 945% (RFR), 92.3% (LSTM), and a cumulative 95.8% reward convergence
(RL).Deployment: Trained models were implemented on the Raspberry Pi 4 for edge-based
real-time inference, enabling autonomous functioning without the need for continuous cloud
connectivity.

4.4 Independent Operation

After deployment, the system functioned in autonomous mode based on the following
cycle:Data Collection: 10T sensors continuously monitored soil and environmental
parameters at 15-minute intervals.Data Transmission: Sensor data was transmitted through
MQTT to the Raspberry Pi and cloud simultaneously. Predictive Analytics:RFR predicted
soil water retention and nutrient uptake.LSTM predicted short-term water need according to
weather forecast.RL agent calculated the best irrigation time (minutes) and fertilizer level
(mg/L) for every field zone.Actuation:Raspberry Pi sent commands to solenoid valves and
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fertilizer pumps, varying water flow and fertilizer levels in real time.Feedback Loop:Soil
moisture and nutrient levels were constantly read to confirm performance, providing

feedback data to the RL agent to improve subsequent irrigation and fertilization policies.

4.5 Operational Metrics
Throughout the experimental phase, the system exhibited high gains in resource efficiency
and crop health:

Traditional Al-loT

Parameter Practi Autonomous Improvement
ractice
System

ater Usagel1 509 830 30.8% savings
(L/day) '
Fertilizer use o
efficiency (%) 68 92 35% increase
Soil moisture o
uniformity (%) 75 94 25% improvement
Manual
intervention 3 0.5 83% reduction
(hours/day)
Crop yieldiy g 155 29% increase
(kg/1000 m?)

5. RESULTS AND DISCUSSION

The experimental evaluation of the proposed Al-powered loT framework for Smart Irrigation
and Fertilizer Management was conducted on a 1000 m? experimental field to validate its
performance, accuracy, and operational efficiency. The system integrates a multi-layer
architecture consisting of a Sensing Layer, Communication Layer, Al Processing Layer, and
Actuation Layer, which collectively enable autonomous, real-time irrigation and nutrient

management.

5.1 Sensor Data Acquisition and Analysis

The Sensing Layer deployed a network of 10T sensors including DHT22 for temperature and
humidity, YL-69 for soil moisture, pH probes, and NPK sensor modules to capture critical
agronomic parameters at regular intervals. Continuous monitoring allowed the collection of
high-resolution temporal datasets encompassing soil moisture, temperature, air humidity, pH,
electrical conductivity (EC), and nutrient content (N, P, K).Sample measurements over a 17-

day period indicated the following trends:
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Soil Soil  |Air EC N p K
e T P Y P esim) - f(maika) [imarka) - [mako)
01/08/2025 |17.5 23.1 |64 6.4 |18 85 45 210
05/08/2025 (14.2 256 |58 6.6 |2.0 90 50 195
09/08/2025 (20.1 229 |68 6.5 |17 95 48 205
13/08/2025 |22.8 21.7 |0 6.7 |19 100 52 220
17/08/2025 |18.4 243 |65 6.5 |21 110 60 230

The data demonstrated expected environmental interactions, such as an inverse correlation
between soil moisture and temperature, with moisture decreasing as temperatures rose and
increasing again following rainfall events. Nutrient concentrations gradually increased over

time, highlighting the system capability to detect trends in nutrient absorption.

Fig 2: Level indicator 2

5.2 Irrigation and Nutrient Computation

The system employed a combination of formula-based computations and Al predictions to
determine irrigation and fertilizer requirements. Soil moisture thresholds triggered irrigation
when volumetric water content (0) fell below 15%, using the Crop Water Stress Index (CWSI)
and evapotranspiration (ETc) to calculate the irrigation water requirement (IWR):[IWR =
(ET _c - P_e) \times K_c] Where ETc represented crop evapotranspiration, Pe was effective
rainfall, and Kc the crop coefficient. For instance, for a maize crop (Kc = 1.15) with ETo =
5.2 mm/day over 1500 m?, the system calculated WD = 8970 L/day, ensuring precise water
allocation.Fertilizer dosing was computed dynamically using:[F_d = \frac{(T_n -
A_n)}HE_f}] Where Tn is the target nutrient level, An the actual nutrient concentration, and
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Ef the fertilizer efficiency factor (0.6-0.8). This formula allowed for fine-tuned nutrient

application, minimizing over-fertilization while maintaining optimal crop growth.

5.3 Communication Layer Performance

Reliable data transmission was critical for real-time control. The Communication Layer
employed LoRaWAN for long-range, low-power transmission, Wi-Fi for localized high-
bandwidth transfer, and MQTT protocols for message routing. The experimental data showed
consistently high packet delivery ratios (PDR > 97%) and low latency (<200 ms), ensuring

uninterrupted sensor-to-cloud communication. Sample network performance metrics were as

follows:
Signal
Date Packets Pack_ets Strength SNR |Latency |PDR |Throughput
Sent Received (dB)  [(ms) (%) (kbps)
(dBm)
01/08/2025 [500 485 -92 105 |185 97 30
05/08/2025 (520 508 -88 11.2  |160 976 |33
17/08/2025 (580 575 -91 11.3  |150 99.1 |35

The low latency and high throughput supported real-time actuation and immediate feedback

loops, critical for adaptive irrigation management.

5.4 Al Model Predictions

The Al Processing Layer integrated Random Forest Regression (RFR), LSTM networks, and
Reinforcement Learning (RL) agents to forecast soil moisture, predict water demand, and
control irrigation and fertilizer application.RFR captured R2 = 0.94 in soil moisture and
nutrient uptake prediction, accurately converting raw sensor data to actionable moisture
profiles.LSTM extracted temporal patterns in environmental data, with MAE = 0.12 in
forecasting short-term irrigation demand.RL agents adapted dynamically to irrigation volume
and nutrient dosing, with consistent improvement in reward scores and water saving over 30
episodes (up to 28% water reduction and 25% fertilizer optimization).The correlation
between predicted water demand and actual irrigation efficiency settled around 99%,

indicating the system's ability to convert Al predictions to accurate field-level control.

5.5 System Overall Performance
The combined Al-loT system showed high adaptability to variability in the environment,

adjusting to unexpected rainfall or soil moisture without intervention. Operational indicators
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confirmed improvements in efficiency:Water savings: Around 28-31%, by virtue of Al
scheduling and accurate irrigation.Fertilizer optimization: As much as 20-35% reduction in
nutrient use inefficiency, minimizing environmental runoff and costs.Crop Yyield
improvement: Wheat and tomato production increased by 19-29% owing to optimized water-
nutrient regimes.Operational cost saving: Around 22%, which was due to automation, less
labor, and resource conservation.The system effectively combined real-time data acquisition,
robust communication, forecasting Al analytics, and accurate actuation to provide a complete
autonomous agricultural management setup. Feedback mechanisms between sensors, Al
models, and actuators facilitated dynamic learning so that water and nutrient application
responded dynamically to environmental and plant conditions.Experimental evidence
suggests that Al-driven 10T systems yield quantifiable gains in precision agriculture. Random
Forest Regression delivered robust soil and nutrient predictions, LSTM networks improved
short-term irrigation prediction, and RL agents delivered adaptive optimization that improved
repeated-cycle resource use efficiency. The integration of formula-driven irrigation and
nutrient calculations with Al forecasts guaranteed precision and responsiveness, while
MQTT-based communication provided robust real-time control. The field deployment
confirmed the scalability and reliability of the proposed framework. It was able to cut human
intervention by 83%, which established the possibility of complete autonomous operation.
With accurate, data-based irrigation and fertilization, the system promotes sustainable
agriculture, saving water, minimizing fertilizer loss, and maximizing crop yields. The
outcomes verify that combining loT sensing, effective communication, Al analytics, and
actuated actuation constitutes a solid precision farming system with potential for real-world
implementation. Experimental testing using a 1000 m? test farm validates not only the
technology feasibility of the framework but also its scalability to be deployed in commercial

farming for sustainable, smart, and high-production agriculture.

6. CONCLUSION

This research shows how the thoughtful integration of Artificial Intelligence and the Internet
of Things can make farming more intuitive, efficient, and sustainable. By continuously
listening to the field through sensors and learning from data patterns over time, the proposed
Al-powered loT framework moves agriculture away from guesswork and toward informed,
real-time decision-making. Instead of applying water and fertilizers uniformly, the system
responds to the actual needs of the soil and crops, much like an experienced farmer who

understands subtle changes in the field but with far greater precision and consistency. The
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experimental results clearly demonstrate practical benefits: significant savings in water and
fertilizer usage, improved soil moisture uniformity, reduced manual labor, and noticeable
gains in crop yield. These improvements are not just technical achievements; they translate
directly into lower costs for farmers, reduced environmental impact, and more resilient food
production systems. The use of Random Forest, LSTM, and Reinforcement Learning enables
the system to adapt dynamically to changing weather conditions, soil variability, and crop
growth stages, ensuring that decisions improve over time rather than remaining fixed or rule-
based. Equally important is the frameworks scalability and real-world relevance. Its modular,
cloud—edge hybrid architecture makes it suitable for both smallholder farms and large-scale
agricultural operations, even in regions with limited connectivity. By minimizing resource
wastage and supporting sustainable practices, the system aligns well with global goals related
to food security, water conservation, and environmental protection. In essence, this work
demonstrates that smart farming is not just about advanced technology, but about using
technology responsibly to support farmers, protect natural resources, and ensure long-term
agricultural sustainability. As Al-10T systems continue to evolve, they hold strong promise
for shaping a future where farming decisions are smarter, more adaptive, and deeply

connected to the real needs of the land and the people who depend on it.
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