

International Journal Advanced Research Publications

ARTIFICIAL INTELLIGENCE IN TELERADIOLOGY: TRANSFORMING REMOTE IMAGING SERVICES

***Agam Verma, Palak Vasdev, Kanishq Awasthi**

Assistant Professor, Faculty of Health & Allied Sciences, Guru Kashi University.

Article Received: 09 December 2025, Article Revised: 29 December 2025, Published on: 17 January 2026

*Corresponding Author: Agam Verma

Assistant Professor, Faculty of Health & Allied Sciences, Guru Kashi University.

DOI: <https://doi-doi.org/101555/ijarp.8661>

ABSTRACT

Doctors in remote and underserved areas rely on teleradiology, since remote interpretation of radiological images greatly helps deliver diagnostic services where they are needed most. By adopting AI, and especially machine learning and deep learning, this field is experiencing major changes as images are interpreted better, tasks are simplified, and there's less demand for radiologists. Thanks to AI algorithms, doctors are able to find any unusual results, deal with the most urgent cases, and write organized reports, which helps improve both the correctness and speed of remote radiology services. The review describes how artificial intelligence is currently being used in teleradiology, as well as its benefits. It also deals with continuous issues such as privacy with data, biased algorithms, lack of proper facilities, and ethical matters. In spite of these problems, AI can give radiologists useful assistance and help make healthcare more efficient. For clinical practice to be accurate, safe, and trusted, it is important to use a collaboration approach of both human knowledge and AI technology. AI will play a big role in teleradiology if it is implemented carefully, is overseen by regulators, and driven by further developments.

KEYWORDS: Artificial Intelligence (AI) , Teleradiology , Remote Imaging Services , Radiology Informatics , Diagnostic Accuracy

1. INTRODUCTION

Teleradiology helps send image examinations from one place to another for a qualified radiologist to analyze. Thanks to this approach, people in under-served areas are now able to get high-quality medical care through remote communication links to more specialized

places. Teleradiology has shown to be very important at night time, on weekends, and during emergencies, when having people ready to check images can be difficult.

Because of recent progress in digital imaging, Picture Archiving and Communication Systems (PACS), and high-speed internet, teleradiology is now a major component of healthcare worldwide. Greater use of imaging procedures along with a low number of radiologists causes difficulties in providing fast reports and keeping quality at a high level.

ML and DL, which are skills of AI, have greatly improved the abilities of professionals in the field of radiology. In particular, using CNNs in medical imaging shows very good results for classifying, detecting, and segmenting images. With the help of AI, teleradiologists can detect irregularities more quickly, improve the quality of images, focus on urgent cases, and produce quick initial reports, hence providing more precise results.⁽¹⁾

Blending AI with teleradiology signifies a big change in the way diagnostic services are given in the healthcare industry. It's obvious from our study that using AI in teleradiology brings certain issues. Ethical matters, the safety of patient information, treating algorithms so that they are easy to understand, and the lack of proper technology in some places should be addressed.

Table 1: Comparison of Traditional Teleradiology vs AI-Enhanced Teleradiology.

Feature	Traditional Teleradiology	AI-Enhanced Teleradiology
Image Analysis	Manual interpretation by radiologists	Automated anomaly detection and image classification
Report Generation	Typed or dictated by radiologists	AI-assisted structured reporting using Natural Language Processing (NLP)
Turnaround Time	Dependent on radiologist availability	Reduced due to automated triaging and prioritization
Accuracy and Consistency	Variable, subject to fatigue and inter-observer differences	High consistency; AI maintains performance over time
Workflow Management	Manual sorting and assignment of cases	AI-driven case prioritization and workload balancing
Infrastructure Requirement	Requires PACS and internet	Requires additional AI processing power and integration systems
Cost Implications	Variable; dependent on staffing and infrastructure	Potential cost savings through efficiency, but initial AI cost may be high
Access in Rural Areas	Limited by human resource availability	Improved access with AI-assisted diagnosis
Learning and Adaptation	Based on experience and training	AI continuously learns from large datasets (if updated properly)
Patient Data Privacy Risk	Present with digital transmission	Heightened due to data usage for AI model training

2. Overview of the Fundamentals of AI and Teleradiology

2.1 AI plays a role in the field of Radiology.

Artificial Intelligence (AI) uses computer systems to carry out tasks such as reasoning and solving problems like humans do. AI, with its main focus on deep learning (DL), has shown excellent achievements in radiology. Using CNNs, DL models have the ability to handle the analysis of medical images.

- AI is used in radiology to handle various important tasks.
- Identifying lesions in tissue, for example, cancerous lung nodules (or) bleeding in the brain
- This step is important for identifying things such as organ edges and tumors.
- Mainly, image classification is focused on distinguishing pneumonia from general lung X-rays.
- For example, ways of measuring amounts, such as measuring the volume of tumor and the bone's density⁽²⁾

2.2 How the Process in Teleradiology is Carried Out

The process for teleradiology is different from traditional radiology.

With teleradiology, radiologists can analyze and interpret images taken somewhere else without going on site to do so. With this technology, patients from any area, even those without much equipment, can receive fast and quality diagnosis help. Many limited steps are used in the process to promote efficiency, safety, and correct results.⁽³⁾

The Usual Process of Teleradiology

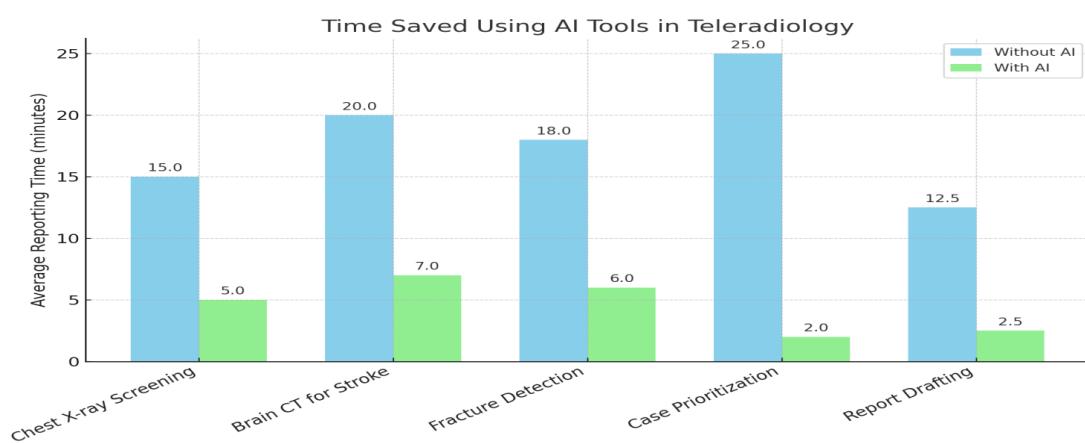
Step: 1 The images are captured.

When a patient undergoes medical imaging, X-rays, CT scans, or MRIs are taken at the healthcare facility with digital devices. Most of the time, this happens in a hospital, diagnostic center, or rural clinic.

Step: 2 You should secure the process of transferring images.

After being encrypted, the images are sent reliably using a special network or the internet to a location away from the system. When data is handled according to DICOM and HIPAA, privacy and accuracy are guaranteed.

Step : 3 The radiologist's next step is to interpret the image.


At the distant location, an authorized radiologist gets the pictures through PACS (Picture Archiving and Communication System). Using sophisticated diagnostic screens, the radiologist goes through all the patient scans.

Step 4: Making the Report and Sharing It

When the interpretation is finished, the radiologist writes a report with the diagnosis. The physician or healthcare provider who referred you gets the report online right away to use when making office decisions.⁽⁴⁾

Table: 2 (2.3 AI Integration Points in Teleradiology)

Integration Point	AI Functionality	Impact
Image Pre-processing	Enhancing resolution, noise reduction, contrast adjustment	Improved readability of poor-quality images
Anomaly Detection	Detecting abnormalities (nodules, bleeds, fractures, etc.)	Early diagnosis, especially in emergencies
Triage and Prioritization	Sorting critical from non-urgent cases	Faster reporting for life-threatening conditions
Natural Language Processing (NLP)	Generating preliminary reports or flagging findings	Reduces radiologist workload and turnaround time
Workflow Automation	Assigning studies based on complexity or urgency	Efficient case management

Graph: 1 (Tim Saved AI Tools in Teleradiology)

3. AI helps in the field of Teleradiology.

The usage of artificial intelligence in teleradiology has led to creative answers for problems with image quality, the number of patient reports, efficiency of work, and consistency in reporting. Here are the significant uses where AI is improving the tasks in teleradiology:

3.1 Improving and preprocessing images

- AI can first enhance the quality of medical images before anyone starts analyzing them.
- Deep learning processing makes sure that low-quality CT or X-ray scans are free from noise without decreasing the radiologist's abilities to read the scans.
- AI allows image data to be standardized, so the picture characteristics remain the same in any dataset, even from many different sources and machines.
- AI software can scan DICOM headers and images and delete any identifying details (such as a person's name and date of birth) to keep patient information private before sending the images.⁽⁵⁾

3.2 Tools that Can Read and Understand Photos

- AI is able to swiftly check pictures for unusual patterns, which is very useful in crisis and busy hospitals.
- Using AI, it is now possible to detect different medical conditions.
- Chest X-rays or CT scans may show up a sign of lung cancer in the form of lung nodules.
- Brain CTs should be checked for intracranial hemorrhages when dealing with stroke and trauma patients
- The early detection of breast cancer is helped by identifying breast lesions in mammography.
- AI in Radiology provides a “preview” that notifies a doctor about important findings before a review is started. This is very beneficial when used for these groups:
 - Lowering the demand during times when there are many patients to handle
 - Giving immediate attention to cases that need to be handled fast⁽⁶⁾
 - Offering safety by allowing patients to obtain an additional opinion
 - AI uses numbers to calculate how large a lesion is, how much space it takes up, and how the lesion changes with time.

3.3 Making the workflow more efficient

- Thanks to AI, tasks in teleradiology can be done more efficiently and more patients can be reviewed.
- With AI, patients' brain scans are reviewed in real time and all-important cases such as stroke, bleeding, or broken bones are brought to doctors' attention ahead of other patients.⁽⁷⁾

Case allocation: With AI, cases can be given to the right doctors depending on their complexity, method, or field of specialization, stopping overburdened radiologists from seeing important cases early.

Shorter Reporting Time: Thanks to automating basic reads and simplifying report generation, AI keeps reports from being delayed, which is good for doctors and for patients.

3.4 NLP is also important in the context of reporting.

- Because of NLP, AI can make sense of pictures and come up with human-like text, which is changing report creation in teleradiology.
- After analyzing a medical image, AI will produce a preliminary report with the doctor's findings and the clinical impression. After that, radiologists go over the report, improve it, and finalize it.
- With a template, AI consistently writes reports that use the same language, formats, and the same terms (SNOMED CT or RadLex).⁽⁸⁾
- Using NLP, these devices can record and transcribe direct notes to more organized format quickly.
- Because of this, reports are processed faster, there are fewer transcription errors, and all guidelines for documentation are met by every institution.

3.5 supporting doctors by offering guidance and grouping patients by risk.

- AI also connects important data from a patient's past with their imaging results to give better recommendations.
- In clinical practice, AI models may combine various reports and studies to recommend possible diagnoses and notice any present warning signs.
- When it comes to conditions like malignancy, disease of the heart, or fractures, AI generates risk scores that help guide when medical exams or actions should be given priority by doctors.
- It should be possible to connect the medical system with teleconsultation platforms.
- AI is now being used by modern teleradiology platforms to provide on-demand communication between doctors and radiologists.
- AI Annotations can be displayed as radiologists and referring doctors look at the images during teleconsults.⁽⁹⁾
- Before a remote radiologist reviews an image, AI can offer a “second opinion” in situations where it is hard to get access to specialists.

4. The ways AI helps Teleradiology

By including Artificial Intelligence in teleradiology, there are now many benefits that make it easier to diagnose patients in areas without sufficient medical services. Introducing intelligent automation with remote workflows makes it possible for healthcare institutions to handle imaging services more quickly, accurately, and evenly. These are some of the main reasons why agile model works well:

4.1 More people have access to radiation-based medical services.

AI-based teleradiology allows doctors in urban clinics to help those in underserved places. AI systems allow patient care to proceed efficiently in regions where access to radiologist services is very limited or absent.

A health center in a rural area can use AI in imaging to send pictures to a remote clinic where AI first checks for anything unusual and sends only urgent results to the center right away.⁽¹⁰⁾

4.2 Improved rate and efficiency

AI is a quicker way to study and understand medical images. Identifying risks like hemorrhaging, broken bones, and tumors, AI technology lets doctors pay attention to critical cases right away. It speeds up the time it takes to treat patients and makes their results better, mainly in emergencies.

If stroke patients receive prompt identification of a brain bleed, it becomes possible to act on it faster and help them sooner within the critical window.

4.3 Standardizing the Process and Cutting Down Variation

Thanks to the logic in AI algorithms, data interpretation is consistent and the same across cases and people. Thus, it makes differences between radiologists' opinions less common and enhances how sure they are when diagnosing a large number of cases.

For example: AI can make sure that all BI-RADS scores given in breast imaging are accurate and do not vary much among different readers.⁽¹¹⁾

4.4 24/7 Availability and Scalability

The service should be always available and do well even with many users at once.

Unlike a human radiologist, an AI system can carry out work nonstop and offer assistance any time of day. It is particularly helpful when there aren't enough doctors on staff at night, on weekends, and during holidays, as it could slow down important diagnosis.

Example: AI tools have the ability to go over new studies at night and alert staff if urgent cases need attention right away or can wait till the morning.

4.5 Radiologists should manage their workload properly.

AI is like an assistant as it deals with regular activities such as reviewing normal chest X-rays or assessing the age of bones. Because of this, radiologists can concentrate on cases that need their personal involvement, resulting in effective use of their resources and reduced stress.

The use of AI technology allows a radiologist to focus exclusively on rare or complicated illnesses affecting newborns.⁽¹²⁾

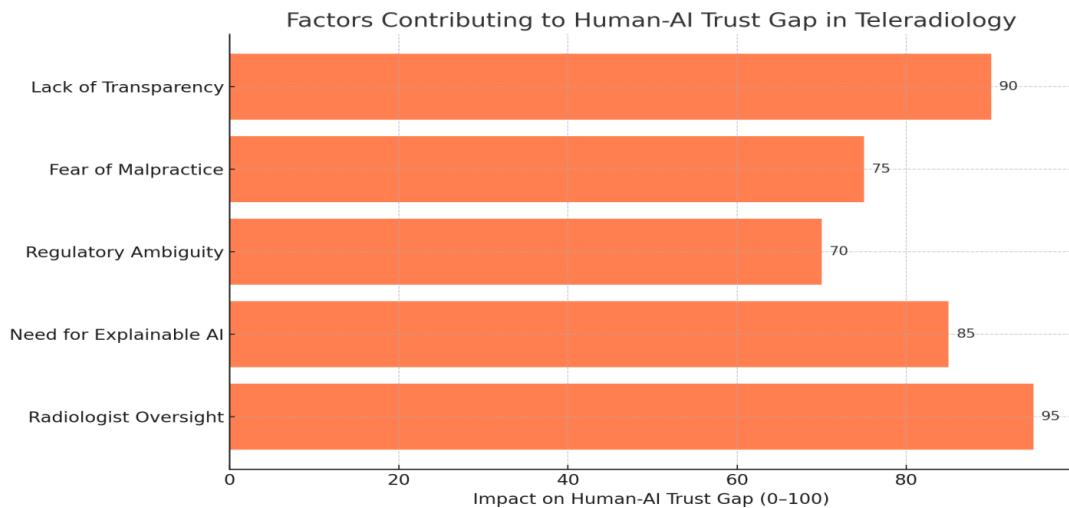
4.6 Quality assurance and reporting is done better.

With checklists and similar phrases, AI promotes equal use of proper terms and writing in each radiologist's report, aiding clinical practice and standard communication among healthcare groups.⁽¹³⁾ NLP helps in discovering parts of the report that are left out or places where there are contradictions between the words and the meaning.

5. There are certain issues and boundaries related to AI in teleradiology.

Although AI can bring a lot of changes to teleradiology, certain challenges prevent it from being implemented everywhere. Such problems affect the technology, morality, regulations, and infrastructure aspects. It is vital to resolve these issues to make sure AI is used safely and equally in remote healthcare.

5.1 Taking Care of Personal Data


The main feature of teleradiology is digital sharing of private patient data. Employing AI in these processes increases the chance of losing confidential data, mainly when using online platforms and aSpps. It becomes more complicated to comply with healthcare data regulations when de-identified as well as identifiable patient data is handled by AI systems.⁽¹⁴⁾

AI developers and healthcare providers should apply encryption, secure their data, have proper access controls, and track all activities for keeping data private and safe.

5.2 Machine learning algorithms can have bias and tend to give similar results.

- A lot of the AI algorithms used in radiology are created using information from particular groups, equipment types, or location-based groups. It leads to bias, so the models may not be suitable for many different groups, mainly found in diverse or under-privileged areas.
- If the training process uses little data on uncommon conditions, the AI might not be able to recognize them accurately.
- How images turn out depends on the machine model, company, or the way the imaging was performed.

- For instance, an algorithm created from North American radiological data could be less effective on rural Indian and African patients due to differences in the diseases, the way equipment is tuned, and the shape of the patients' bodies.

Graph: 2 (Human-AI Trust Gap)

6. The most recent events and trends are discussed.

The popularity of AI in teleradiology is increasing tremendously because of modern technology, demand for remote diagnostics, and greater investments in it. Trends that are currently rising are having an impact on AI-enhanced teleradiology in the future:

There are platforms that have AI functions and can be used through the internet.

Different AI tools are being offered more often as services found in the cloud. On these platforms, healthcare professionals have the option to use sophisticated diagnostic equipment without buying or storing servers on site.

Perks of cloud computing are being able to add more features, team up from different locations, and check for updates from anywhere.

Main providers of AI apply their solutions as modules that can be incorporated into your current PACS.

6.2 Approach called Federated Learning

Federated learning makes it possible for organizations to work together on AI training while preserving each institution's data. On the other hand, only the model's parameters are sent, making sure patient data is kept private.

This method manages privacy issues within data according to the rules of GDPR and HIPAA.

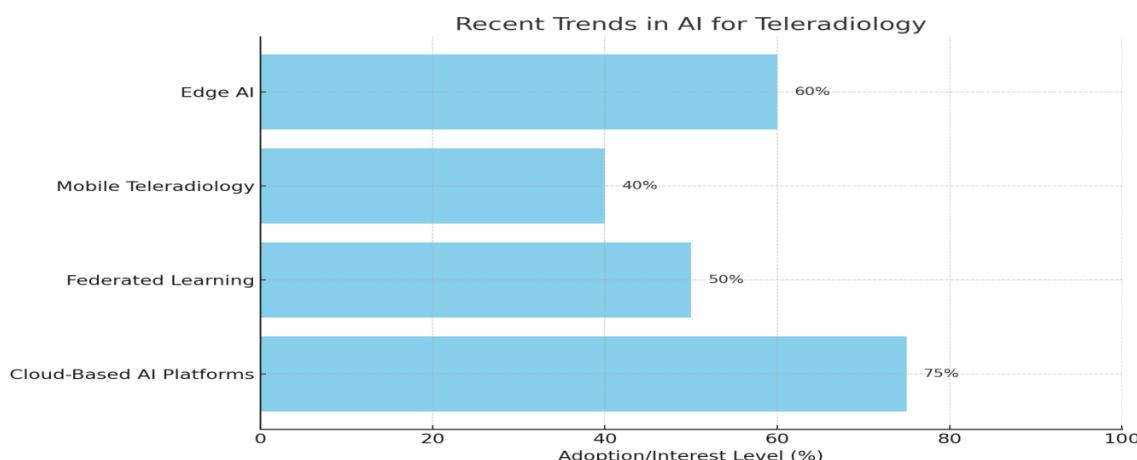
The goal is to produce AI that is useful with various groups of people and types of imaging tests.

6.3 Teleradiology by means of smartphones

Because of shared information and new imaging devices, AI now plays a role in portable imaging. They can be very helpful if used for:

Disaster zones

Rural health camps are held in the countryside for those who need medical care.


Hospitals built for the military and in the middle of battles

6.4 Edge AI is an area that involves processing data where the data was collected.

In Edge AI, AI models are performed directly on the images or computers near them, unlike the cloud-based systems. As a result, there is less delay, and users can work even when connected to the internet is not possible.

Thanks to Edge AI, important decisions can be taken more quickly in critical or emergency situations.

It reduces the money companies spend on moving information by transferring less data.⁽¹⁵⁾

Graph: 3 (Recent Trends in AI Teleradiology)

7. Real-World Applications

AI is being used by many startups and healthcare systems in teleradiology.

Qure.ai uses AI technology to spot TB, COVID-19, and stroke from exams done with chest X-rays and head CTs.

RADLogics mainly works on using AI to triage radiology images during the COVID-19 pandemic.

Arterys brings AI into radiology by creating cloud-based technologies that can be used from various devices.

Table: 3 (Key Players and Innovations)

Company	Key Focus	Notable Outcomes
Qure.ai	Chest X-rays, Head CTs (TB, COVID-19, Stroke detection)	Early detection of TB and stroke; used in >40 countries across Asia, Africa, and Latin America.
RADLogics	AI for triaging radiology exams (esp. COVID-19)	Reduced report turnaround times and workload during the pandemic.
Arterys	Cloud-based multi-modal radiology analysis	Enabled real-time AI diagnostics accessible via web and mobile devices.

Graph: 4 (Estimated Reduction in Triage Time by AI Companies)

8. Future Perspectives

There is a lot of potential for growth and change in AI in teleradiology. With the growth of technology, there are now more options available, which can both enhance radiology's effectiveness and offer every patient better care on a personal level. Some of the leading future paths are given in the following paragraphs.

Foundation models benefit from successfully integrating multiple types of artificial intelligence.

Future AI systems will use radiological information in addition to EHRs, lab findings, genetic tests, and a patient's medical background. Using several ways to gather data can make the process more effective.

Diagnosis can be more accurate when the medical team looks at the situation in context.

Improved prediction of patients' outcomes and early detection of diseases

AI helps with decisions that are similar to doctors' clinical thinking process

In situations such as cancer, heart diseases, and neurological diseases, these systems will play a valuable role.

8.2 medical researchers are developing more personalized forms of testing.

The development of AI models is making it possible to identify high-risk patients, so treatment can be adjusted according to each individual's condition. Now, doctors don't just treat everyone the same; instead, they base treatments on a person's needs.

Screenings that can be adjusted by an AI based on the tests done, a person's age, gender, or if they have specific genetic characteristics

Follow-up plans that make use of real-time information from several sources

Use of analytics to assess the course of disease and advise on how best to prevent it

This agrees with the main direction of precision medicine.

8.3 The effort to ensure global health equity

With AI, there are new possibilities to solve the problem of not having enough radiologists around the world, mainly in rural India, sub-Saharan Africa, and regions that have recently experienced war.

Without needing a radiologist on-site, AI made available through the cloud can give helpful support for diagnosis.⁽¹⁶⁾

Public health infrastructure can use AI-based teleradiology to make it possible for more people to be diagnosed with diseases early on.

Allowing everyone to get healthcare is crucial to achieving universal health coverage.

8.4 Laws are needed to ensure that technological advances are valid and consistent across nations.

Even so, integrating AI into medical care is difficult since there are not enough set validation methods and guidelines from the regulators. There is a need to concentrate on the following areas in the future:

Worldwide standards for diagnostic accuracy, how reliable the tests are, and safety

If AI systems are easy to understand and explain what they do, it will be easier for doctors to use and rely on them.

The FDA, EMA, and CDSCO all working together so the global market can support their products

Having set, proven guidelines will be necessary to gain people's trust and keep AI responsible in the real world.

8.5 Including professionals from several areas in care

How effective and successful AI will be in teleradiology also relies on the way different groups in the field cooperate. Keep fostering relationships between the groups involved.⁽¹⁷⁾

Radiologists are responsible for making clinical guidance in these cases.

Data scientists are responsible for making sturdy data models.

Policymakers and regulators aim to prevent people and companies from using ethical AI improperly

9. CONCLUSION

Artificial Intelligence (AI) has become a disruptive technology in the field of teleradiology and it has changed the way diagnostic imaging is conducted, interpreted, and provided. Incorporation of AI technologies in teleradiology workflow has enabled healthcare systems to achieve faster, more accurate, and scalable diagnostic services that have overcome the conventional limitation of geography, infrastructure, and the availability of the specialist.

AI systems can improve image quality by using preprocessing methods, but they also help radiologists identify important findings, create structured reports, and sort out emergent cases. These functions have greatly enhanced clinical decision making especially in emergencies that are time dependent like stroke, trauma and acute infections. In addition, AI-based technologies have already shown themselves to be useful in providing diagnostic access to underserved and remote communities, which is an essential factor considering the worldwide shortage of radiologists.

There are however challenges. It is also necessary to protect the privacy of data and the provisions of international regulations such as HIPAA and GDPR since patient data is transferred and processed in a digital format. Also, algorithm bias, poor generalization, and infrastructure differences (especially low-resource scenes) represent severe constraints to universal acceptance. The explainability of some AI models (the black box problem) is also a reason to make clinicians hesitant, which is why explainable and ethically aligned AI systems are required.

In order to realize the full potential of AI in teleradiology, an approach balancing and collaborative approach is essential. Radiologists have to collaborate with data scientist, engineers and policymakers in ensuring that the AI tools become clinically validated, contextually adaptable and ethically regulated. The future development must be driven not only by performance measures, but also by interoperability, transparency, inclusiveness and sustainability in the long term.

Essentially, AI in teleradiology is not intended to replace human specialist, but is an empowering booster. Only through the sensible integration of the AI computational advantages with the interpretation capabilities of educated radiologists can we create a more

effective, fairer, and more resilient model of healthcare delivery adapted to the needs of the new world.

REFERENCES

1. Huang, J., Ho, J., Nguyen, V. N., Bui, D. M., Dinh, V. A., Brown, D. F. M., & Jha, S. (2023). Generative artificial intelligence for chest radiograph interpretation in the emergency department. *JAMA Network Open*, 6(10), e2336100. <https://doi.org/10.1001/jamanetworkopen.2023.36100>
2. Sloan, P., Clatworthy, P., Simpson, E., & Mirmehdi, M. (2024). Automated radiology report generation: A review of recent advances. *arXiv*. <https://arxiv.org/abs/2405.10842>
3. Mohsen, F., Ali, H., El Hajj, N., & Shah, Z. (2022). Artificial intelligence-based methods for fusion of electronic health records and imaging data. *arXiv*. <https://arxiv.org/abs/2210.13462>
4. Guo, L., Tahir, A. M., Zhang, D., Wang, Z. J., & Ward, R. K. (2024). Automatic medical report generation: Methods and applications. *arXiv*. <https://arxiv.org/abs/2408.13988>
5. Zanardo, M., Visser, J. J., Colarieti, A., et al. (2024). Impact of AI on radiology: A EuroAIM/EuSoMII 2024 survey among ESR members. *Insights into Imaging*, 15, 240. <https://doi.org/10.1186/s13244-024-01801-w>
6. Beşler, M. S., & Koç, U. (2025). A systematic review of artificial intelligence competitions in radiology: A focus on design, evaluation, and trends. *Diagnostic and Interventional Radiology*. <https://dirjournal.org/articles/systemat>
7. Eibschutz, L., Lu, M. Y., Yu, K. H., et al. (2025). Clinical implications of teleradiology in rheumatic and musculoskeletal diseases. *Rheumatology International*. <https://link.springer.com/article/10.1007/s00296-025-05810-w>
8. Pettet, G., Davies, C., & Oakley, S. (2024). A retrospective audit of an AI software for intracranial haemorrhage detection in UK teleradiology. *BJR Open*, 6(1), tzae033. <https://doi.org/10.1093/bjro/tzae033>
9. Qure.ai. (n.d.). *AI solutions for radiology and diagnostics*. <https://qure.ai>
10. RADLogics. (n.d.). *AI-Powered medical imaging*. <https://radlogics.com>
11. Arterys. (n.d.). *AI radiology cloud platform*. <https://arterys.com>
12. Weikert, T., Itani, M., Nguyen, T. D., & Baer, M. (2020). Automated detection of pulmonary embolism using Aidoc AI software. *European Radiology*, 30(5), 2357–2364. <https://doi.org/10.1007/s00330-020-06665-2>

13. Anderson, C. R., Chang, J., & Tarlow, D. (2019). Aidoc's deep learning accuracy in identifying hyperdense lesions. *Investigative Radiology*, 54(10), 637–642.
<https://doi.org/10.1097/RLI.0000000000000587>
14. Rubin, D. L. (2024). Artificial intelligence in radiology: The true role and evidence. *Radiologic Clinics of North America*, 62(6), 935–947.
<https://doi.org/10.1016/j.rcl.2024.03.008>
15. Katal, S., York, B., & Gholamrezanezhad, A. (2024). AI in radiology: From promise to practice. *Computer Methods and Programs in Biomedicine*, 234, 107535.
<https://doi.org/10.1016/j.cmpb.2023.107535>
16. Al-Karawi, D., Hafed, H., & Freeman, G. (2024). A review of artificial intelligence in breast imaging. *Tomography*, 10(5), 705–726.
<https://doi.org/10.3390/tomography10050055>
17. Kumar, S., Pandit, M., & Kalyanpur, A. (2011). Systematic survey of discrepancy rates in international teleradiology. *Emergency Radiology*, 18(1), 23–29.
<https://doi.org/10.1007/s10140-010-0912-y>
18. Pfeifer, C. M., & Dinh, M. L. (2021). Discrepancy rates in after-hours pediatric teleradiology. *Acta Radiologica Open*, 10(2), 2058460121989319.
<https://doi.org/10.1177/2058460121989319>
19. Weikert, D. J., Lee, C. I., & Kirsch, J. E. (2019). AI-based detection for acute findings in abdominal CT. *Investigative Radiology*, 54(6), 337–344.
<https://doi.org/10.1097/RLI.0000000000000550>
20. Zhou, K., & Gattineri, G. (2024). The evolving regulatory paradigm of AI in MedTech. *Therapeutic Innovation & Regulatory Science*, 58(3), 456–464.
<https://doi.org/10.1007/s43441-024-00666-w>