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ABSTRACT 

Groundwater remains the primary source of domestic water supply in North Bank, Makurdi, 

Nigeria, yet its quality varies with source type and exposure to contamination. This study 

assessed the physicochemical characteristics, Water Quality Index (WQI), and parameter 

influence on groundwater from boreholes (BHs) and hand-dug wells (HDWs) using 

multivariate analysis and Artificial Neural Network (ANN) modeling. Borehole water 

exhibited slightly alkaline conditions (pH 7.50 ± 0.79) with higher mineralization, reflected 

by Total Dissolved Solids (427.6 ± 176.2 mg/L) and Electrical Conductivity (747.2 ± 492.8 

µS/cm), indicating prolonged water–rock interaction within deeper aquifers. In contrast, 

HDWs showed lower mineral content (TDS = 267.6 ± 181.8 mg/L; EC = 510.2 ± 321.2 

µS/cm) but elevated indicators of organic and anthropogenic contamination, including 

Biochemical Oxygen Demand (48.6 ± 6.4 mg/L) and nitrate (41.4 ± 24.7 mg/L), alongside 

reduced dissolved oxygen (5.12 ± 0.19 mg/L). Water Quality Index values ranged from 28.6 

to 45.9 for boreholes, classifying them predominantly as Good, while HDWs ranged from 

32.1 to 51.4, spanning Good to Poor categories. The integrated mean WQI of 37.5 places 

groundwater in North Bank within the Good class overall; however, the presence of Poor-

quality HDWs indicates localized deterioration linked to shallow aquifer vulnerability and 

surface contamination. ANN synaptic weight analysis identified nitrate (12.7%), total 

hardness (11.6%), electrical conductivity (11.1%), and calcium (10.4%) as dominant drivers 

of borehole water quality, reflecting geogenic control. Conversely, HDW quality was most 
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influenced by chlorine (12.5%), electrical conductivity (11.5%), dissolved oxygen (11.1%), 

calcium (10.5%), and turbidity (10.4%), underscoring the role of anthropogenic inputs. The 

findings demonstrate that while boreholes in North Bank generally provide relatively safe 

groundwater, hand-dug wells pose significant quality concerns that lower overall water 

reliability. Targeted protection, routine monitoring, and appropriate treatment of shallow 

wells are therefore essential to safeguard public health and ensure sustainable groundwater 

use in Makurdi. 

 

KEYWORDS: Groundwater quality, Water Quality Index (WQI), Artificial Neural Network 

(ANN), Boreholes and hand-dug wells, North Bank, Makurdi. 

 

1. INTRODUCTION 

Groundwater is a critical freshwater resource that supplies drinking water to nearly half of the 

global population and plays an especially vital role in developing countries where surface 

water treatment infrastructure is inadequate or unreliable (Foster & Chilton, 2018; Lapworth 

et al., 2017). In urban centers across sub-Saharan Africa, groundwater has increasingly 

become the primary source of domestic water due to rapid population growth, climate 

variability, and the progressive failure of centralized water supply systems (UNESCO, 2019; 

Adimalla & Qian, 2019). 

The quality of groundwater is intrinsically linked to surface processes through recharge 

mechanisms such as rainfall infiltration, river seepage, floodplain inundation, and irrigation 

return flow. These surface-to-groundwater interactions create direct pathways through which 

contaminants introduced at the land surface or into surface water bodies can migrate into 

aquifers (Lapworth et al., 2018; Li et al., 2019). Shallow aquifers in urban floodplain 

environments are particularly vulnerable, as permeable soils, high water tables, and seasonal 

flooding facilitate rapid contaminant transport from surface water to groundwater systems 

(Bhaskar et al., 2020; Brunner et al., 2021). 

Surface water bodies, especially rivers, exert a strong control on groundwater quality where 

hydraulic connectivity exists. Polluted rivers can act as persistent sources of groundwater 

contamination through bank infiltration and hyporheic exchange, particularly during high-

flow events (Foster & Chilton, 2018; Lapworth et al., 2017). Under such conditions, 

dissolved solids, nutrients, pathogens, and heavy metals present in river water may infiltrate 

adjacent aquifers, leading to long-term degradation of groundwater quality (Briffa et al., 

2020; Kumar et al., 2021). 
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In Nigeria, groundwater dependence has intensified over the past two decades due to the 

declining functionality of public water supply infrastructure. Many state-owned waterworks 

operate far below installed capacity or have become completely non-functional because of 

poor maintenance, inadequate funding, erratic power supply, aging infrastructure, and weak 

institutional management (Akinwale, 2018; World Bank, 2020). As a result, urban residents 

increasingly rely on privately constructed boreholes and hand-dug wells, often without proper 

hydrogeological assessment or water quality monitoring (Ehirim & Maduka, 2019; Akoteyon 

et al., 2019). 

Makurdi metropolis presents a clear example of this challenge. The Benue State Greater 

Waterworks, which once provided treated surface water from River Benue, has remained 

largely non-functional for extended periods, forcing households, institutions, and commercial 

establishments to depend almost entirely on groundwater sources for their daily water needs 

(Iwar et al. 2021; Eneji et al., 2017; Akaahan et al., 2015). This situation has led to a 

proliferation of shallow hand-dug wells and boreholes across the city, many of which are 

located in close proximity to pollution sources such as septic tanks, refuse dumps, drainage 

channels, and polluted surface waters. 

The failure of centralized water supply has inadvertently increased pressure on groundwater 

resources and heightened the risk of contamination from surface-derived pollutants. In 

floodplain cities like Makurdi, where River Benue traverses densely populated areas, river 

water contributes significantly to groundwater recharge through bank infiltration and flood-

induced percolation (Eneji et al., 2011; Ejembi et al., 2018). However, intensive 

anthropogenic activities along the riverbanks, including sand mining, indiscriminate waste 

disposal, agricultural runoff, and effluent discharge, have deteriorated river water quality, 

increasing the likelihood of contaminant transfer from surface water to groundwater (Iwar et 

al., 2020; Akaahan et al., 2015). 

Studies conducted along the Makurdi stretch of River Benue have reported elevated 

concentrations of physicochemical pollutants and trace metals exceeding permissible limits, 

raising concerns about secondary groundwater contamination (Iwar et al., 2020; Ejembi et al., 

2018). During seasonal flooding events, contaminated river water may infiltrate surrounding 

soils and shallow aquifers, facilitating the transport of dissolved solids, nutrients, and heavy 

metals into groundwater sources used for drinking and domestic purposes (Lapworth et al., 

2018; Bhaskar et al., 2020). 

The growing dependence on groundwater in Makurdi, combined with inadequate regulation 

of borehole construction and limited water quality surveillance, poses significant public 
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health and environmental risks. Heavy metals and inorganic contaminants introduced at the 

surface are of particular concern due to their persistence and potential to accumulate within 

aquifer systems (Tchounwou et al., 2018; Briffa et al., 2020). Once groundwater is 

contaminated, remediation is technically complex and economically prohibitive, making 

prevention and early detection essential (Foster & Chilton, 2018; Kumar & Singh, 2021). 

Effective groundwater quality management therefore requires analytical approaches capable 

of capturing the complex, nonlinear interactions between surface activities, recharge 

processes, and subsurface hydrochemistry. Conventional water quality indices and statistical 

methods provide valuable descriptive assessments but are limited in their predictive 

capability under dynamic surface-groundwater interaction scenarios (Rana et al., 2018; 

Vasistha & Ganguly, 2020). This limitation has driven increasing interest in data-driven 

modelling techniques. 

Artificial Neural Networks (ANNs) have emerged as powerful tools for groundwater quality 

prediction due to their ability to model nonlinear relationships among multiple input variables 

without requiring prior assumptions about system behavior (Montgomery, 2018). Multilayer 

Perceptron ANN models have been successfully applied to groundwater quality assessment, 

water quality index prediction, and contamination risk evaluation in complex hydrogeological 

settings (Asadollahfardi et al., 2018; Khudair et al., 2018). Recent studies further demonstrate 

that ANN models are particularly effective in capturing the influence of surface-derived 

inputs and recharge dynamics on groundwater quality (Elhag et al., 2023; Akakuru et al., 

2023). 

Despite these advances, ANN-based predictive modelling of groundwater quality remains 

underutilized in Nigerian cities experiencing failure of centralized water supply systems. 

There is a clear need for integrated assessment frameworks that combine groundwater quality 

evaluation with predictive modelling to support proactive management. Therefore, this study 

applies an Artificial Neural Network approach to assess and predict groundwater quality in 

Makurdi metropolis, with specific consideration of surface-to-groundwater contamination 

pathways and the implications of non-functional public waterworks on groundwater reliance 

and vulnerability. 

 

2.  MATERIALS AND METHODS 

2.1 Study Area 

The groundwater sampling locations were georeferenced using representative geographic 

coordinates derived from satellite mapping and existing cartographic records of the North 
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Bank in Makurdi North area of Makurdi. The selected sites (Figure 1) are distributed between 

latitudes 7.786°N and 7.812°N and longitudes 8.531°E and 8.567°E, reflecting the spatial 

extent of residential and peri-urban groundwater abstraction points within the study area.  

 

 

Figure 1: Map of the Study Area 

 

Specifically, the Nigeria Army School of Military Engineering (NASME) Barracks is located 

in the northeastern part of North Bank at approximately 7.801°N, 8.567°E, while the Federal 

Low-Cost Estate and Federal Housing Estate lie within the central residential corridor of the 

area, around 7.792°N, 8.558°E and 7.786°N, 8.552°E, respectively. Court-5 is situated in the 

south-central section of North Bank at approximately 7.799°N, 8.545°E, whereas Katungu, a 

peri-urban settlement characterized by intense surface–groundwater interaction, is located 

closer to the River Benue floodplain at about 7.812°N, 8.531°E. 

The spatial distribution of these locations captures variations in land use, population density, 

and proximity to the River Benue, which collectively influence groundwater recharge 

dynamics and vulnerability to contamination. The coordinates provided represent 

approximate central points of each sampling area and are considered adequate for 

groundwater quality assessment studies where emphasis is placed on hydrochemical 

characterization and spatial trends rather than fine-scale geostatistical modeling. 

 

2.2 Sampling and Laboratory Analysis 

Groundwater samples were collected during the dry season from twenty water sources 

comprising boreholes and hand-dug wells across five locations: NASME Barracks, Federal 

Low-Cost Estate, Federal Housing Estate, Court-5, and Katungu. Standard sampling 

procedures were followed, and samples were collected in pre-cleaned 1 L polyethylene 

containers and transported to the laboratory for analysis. Physicochemical parameters 
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analyzed included pH, turbidity, TDS, EC, DO, BOD, nitrate, chloride, phosphate, calcium, 

and total hardness. Analyses were conducted using standard methods recommended by the 

World Health Organization (WHO, 2022) and the American Public Health Association 

(APHA, 2017). 

 

2.3 Water Quality Index Computation 

The Weighted Arithmetic Water Quality Index was employed to assess groundwater 

suitability for drinking purposes. Quality ratings (qₙ) for each parameter were computed 

relative to WHO guideline values, and unit weights (Wₙ) were assigned inversely 

proportional to the permissible standards. The overall WQI was obtained by aggregating the 

weighted quality ratings. Based on WQI values, groundwater quality was classified into five 

categories ranging from excellent to unsuitable for drinking. 

 

2.4 Artificial Neural Network Modelling 

2.4.1 ANN Architecture and Rationale 

A Multilayer Perceptron (MLP) ANN with a feed-forward backpropagation learning 

algorithm was adopted for groundwater quality prediction. The choice of MLP was justified 

by its proven capability to approximate nonlinear functions and its widespread application in 

environmental modelling. Groundwater quality processes are inherently nonlinear due to 

complex interactions among physicochemical parameters, making MLP particularly suitable. 

The ANN architecture comprised an input layer representing the measured physicochemical 

parameters, one hidden layer, and an output layer representing the Water Quality Index. A 

single hidden layer was selected to balance model complexity and generalization capability, 

as excessively deep networks may lead to overfitting given limited environmental datasets. 

 

2.4.2 Data Preprocessing and Training Strategy 

Input data were normalized using standardization to improve convergence and training 

stability. The dataset was randomly divided into training (70%), testing (15%), and validation 

(15%) subsets to ensure unbiased model evaluation. The hyperbolic tangent activation 

function was employed in the hidden layer due to its ability to capture nonlinear 

relationships, while a linear activation function was used in the output layer. 

Model training was performed using backpropagation with error minimization based on mean 

squared error (MSE). Model performance was evaluated using the coefficient of 

determination (R²), root mean square error (RMSE), and mean absolute error (MAE). This 
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multi-metric evaluation ensured robust assessment of predictive accuracy and generalization 

performance. 

 

2.5 Statistical Analysis 

Descriptive statistics and correlation analyses were conducted using SPSS software and 

Python script. The ANN modelling was implemented using the SPSS neural network module. 

Statistical significance was assessed at a 95% confidence level. 

 

3. RESULTS 

3.1 Physicochemical Characteristics of Groundwater 

Table 1 presents the results of the physicochemical analysis of groundwater from both 

Boreholes and Hand-Dug Wells (HDWs). It revealed notable differences in physicochemical 

characteristics. The pH of Borehole water averaged 7.50, which is within the World Health 

Organization (WHO) recommended range of 6.5–8.5, indicating slightly alkaline but 

acceptable conditions. HDW water, however, had a lower average pH of 6.66, still within the 

safe range, but closer to neutral acidity.  

 

Table 1. Physicochemical parameters of groundwater.  

Parameter WHO 

Limit 

Boreholes (  ± SD) Hand-dug Wells ( ± SD) 

pH 6.5–

8.5 

7.50 ± 0.79 6.66 ± 0.76 

TDS 

(mg/L) 

500 427.60 ± 176.17 267.60 ± 181.83 

Turbidity 

(NTU) 

5.0 4.04 ± 1.21 0.91 ± 0.53 

EC 

(µS/cm) 

1500 747.20 ± 492.80 510.20 ± 321.19 

DO (mg/L) 8.0 6.14 ± 1.49 5.12 ± 0.19 

BOD 

(mg/L) 

10.0 31.51 ± 31.00 48.60 ± 6.39 

NO₃⁻ 

(mg/L) 

50 30.72 ± 10.88 41.43 ± 24.72 

Cl⁻ (mg/L) 250 128.90 ± 68.06 89.17 ± 31.31 

PO₄³⁻ 

(mg/L) 

250 50.50 ± 111.53 0.21 ± 0.12 

Total 

Hardness 

(mg/L) 

500 387.20 ± 107.32 100.00 ± 37.42 

Ca²⁺ 

(mg/L) 

75 41.30 ± 19.19 23.34 ± 12.92 
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Total Dissolved Solids (TDS) were higher in Boreholes, with a mean of 427.6 mg/L, 

compared to 267.6 mg/L in HDWs. This suggests that deeper groundwater contains more 

dissolved minerals, which is consistent with natural leaching of soil and rock. Similarly, 

electrical conductivity (EC), a measure of the water’s ionic content, was greater in Boreholes 

(747.2 µS/cm) than in HDWs (510.2 µS/cm), confirming the higher mineral content in deeper 

sources. 

Turbidity, reflecting the presence of suspended particles, was slightly higher in Boreholes 

(4.04 NTU) than in HDWs (0.91 NTU), but both remained below the WHO limit of 5 NTU, 

indicating clear water overall. Dissolved Oxygen (DO) levels were moderate in both sources, 

averaging 6.14 mg/L in Boreholes and 5.12 mg/L in HDWs, suggesting adequate oxygenation 

to support aerobic processes. 

Biochemical Oxygen Demand (BOD), which indicates the amount of organic matter present, 

was substantially higher in HDWs (48.60 mg/L) than in Boreholes (31.51 mg/L), reflecting 

greater organic contamination in shallow wells. Nitrate concentrations were also higher in 

HDWs (41.43 mg/L) than in Boreholes (30.72 mg/L), although both were below the WHO 

limit of 50 mg/L, suggesting some nutrient loading in the shallow water. 

Chloride levels were higher in Boreholes (128.90 mg/L) compared to HDWs (89.17 mg/L), 

consistent with higher mineral dissolution in deeper aquifers. Phosphate concentrations were 

highly variable in Boreholes, with a mean of 50.50 mg/L, while HDWs had negligible 

phosphate levels (0.21 mg/L), reflecting minimal surface-derived phosphate contamination. 

Hardness, largely determined by calcium and magnesium content, was significantly higher in 

Boreholes (387.2 mg/L) than in HDWs (100 mg/L), and calcium concentrations followed the 

same trend, 41.3 mg/L in Boreholes versus 23.3 mg/L in HDWs. These findings indicate that 

Borehole water is generally harder and richer in dissolved minerals than shallow well water, 

which is softer and less mineralized. 

 

3.2 Water Quality Index (WQI) Assessment 

The WQI assessment of groundwater sources revealed distinct differences between Boreholes 

and HDWs (Table 2). For Borehole water, 60% of the samples were classified as “Good,” 

indicating generally acceptable water quality for domestic use, while 20% fell into the “Poor” 

category, suggesting some level of contamination or undesirable properties. An additional 

20% of Borehole samples were considered “Unsuitable,” highlighting pockets of 

groundwater that may pose health risks if consumed without treatment. Notably, no Borehole 
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samples were rated as “Excellent” or “Very Poor,” suggesting that while most deep 

groundwater is of adequate quality, certain locations experience localized degradation. 

 

Table 2. Water quality index classification of groundwater samples. 

Water 

Source 

Excellent 

(%) 

Good 

(%) 

Poor 

(%) 

Very Poor 

(%) 

Unsuitable 

(%) 

Boreholes — 60 20 — 20 

Hand-dug 

Wells 

— — 60 40 — 

 

In contrast, the HDW samples showed a more concerning pattern. Sixty percent of the 

samples were classified as “Poor,” reflecting moderate contamination, and 40% fell into the 

“Very Poor” category, indicating significant deterioration in water quality. No HDW samples 

were rated as “Good” or “Excellent,” and none were deemed “Unsuitable,” suggesting that 

while the water is not immediately hazardous, it generally fails to meet optimal standards for 

domestic consumption. 

The WQI results corroborate the physicochemical findings: Boreholes generally provide 

higher-quality water due to their depth and reduced exposure to surface contamination, 

whereas HDWs, being shallow and more susceptible to anthropogenic and environmental 

inputs, display lower water quality. This trend is consistent with studies in similar 

hydrogeological settings, were shallow wells often present higher levels of microbial and 

chemical contamination, leading to poorer WQI classifications relative to deep boreholes 

(Adewale et al., 2017; Olajire & Ayodele, 2020). 

Overall, the WQI classification highlights the need for targeted monitoring and possible 

treatment, especially for HDW sources, to ensure safe drinking water and mitigate health 

risks associated with suboptimal groundwater quality. 

 

3.3 ANN Model Performance 

Figure 2 showed that the MLP-ANN analysis for Borehole groundwater employed seven 

hidden neurons, with  

synaptic weights linking eleven physicochemical parameters to the hidden layer and 

subsequently to the output layer representing the Borehole Water Quality Index (AMWQI).  
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Figure 2: Multilayer perceptron network architecture for boreholes WQI. 

 

Examination of the input-to-hidden weights (Table 3) shows that Nitrate had weights ranging 

from –0.489 to 0.394 across hidden neurons, Total Hardness ranged from –0.462 to 0.445, 

Calcium ranged from –0.429 to 0.493, and Electric Conductivity ranged from –0.436 to 

0.436. Other significant contributors included Total Dissolved Solids (–0.479 to 0.378) and 

BOD (–0.377 to 0.481). Parameters such as Chlorine (–0.280 to 0.337) and Phosphate (–

0.134 to 0.416) had relatively lower weights across neurons, indicating lesser direct 

influence.The hidden-to-output layer weights for Boreholes further modulated the influence 

of these neurons on the final AMWQI. H4 and H5 had strong negative contributions of –

0.461 and –0.385, respectively, while H7 and H1 had positive contributions of 0.217 and 

0.041. Combined through the network, these synaptic weight patterns indicate that Nitrate, 

Total Hardness, Calcium, and Electric Conductivity exerted the largest influence on Borehole 

WQI, reflecting the prominent role of mineral content and ionic composition in deeper 

aquifers. 

 

Table 3. Synaptic weight ANN AMWQI for boreholes groundwater. 

Predictor H1 H2 H3 H4 H5 H6 H7 

Bias 0.393 0.132 0.442 0.180 0.190 0.094 0.422 

Nitrate -0.231 -0.336 0.394 -0.424 -0.263 -0.489 -0.016 

Total Hardness 0.407 0.445 -0.439 0.076 -0.438 0.042 -0.462 

Calcium -0.340 -0.280 -0.067 0.493 0.131 0.165 -0.429 

Electric Conductivity 0.436 -0.106 0.311 0.296 -0.405 0.069 -0.436 

Total Dissolved Solids -0.311 -0.100 -0.479 0.272 -0.221 -0.360 0.378 

Turbidity 0.489 -0.033 0.297 0.237 0.323 -0.069 0.189 

pH 0.417 -0.487 0.124 -0.412 0.191 -0.123 0.082 

Dissolved Oxygen -0.470 -0.098 -0.399 0.144 -0.346 0.153 0.226 

BOD -0.364 0.453 -0.116 -0.377 -0.272 -0.234 0.481 

Chlorine 0.135 0.189 -0.183 0.337 0.274 -0.269 -0.280 

Phosphate 0.416 -0.390 -0.134 0.224 -0.084 -0.307 0.324 
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Hidden Neuron Output Weight (BH-AMWQI)      

Bias 0.170      

H1 0.041      

H2 -0.322      

H3 -0.288      

H4 -0.461      

H5 -0.385      

H6 -0.264      

H7 0.217      

  

 

For Hand-Dug Wells (HDWs), the ANN employed five hidden neurons (Figure 3). Input-to-

hidden weights (Table 4) show that Chlorine had large negative weights ranging from –1.034 

to 0.688, Dissolved Oxygen ranged from –0.989 to 0.768, Turbidity ranged from –0.618 to 

0.588, and Calcium ranged from –0.669 to 0.706. Parameters such as Phosphate (–0.506 to 

0.060) and Total Hardness (–0.254 to 0.701) had smaller weights, indicating limited influence 

on the hidden layer activations.  

 

 

Figure 3: Multilayer perceptron network architecture for hand dug well WQI. 

 

The hidden-to-output weights further highlighted the relative impact of each neuron: H3 had 

a strong negative weight of –0.578, H5 a strong positive weight of 0.882, while H1, H2, and 

H4 contributed 0.369, 0.213, and –0.007, respectively. This distribution of weights suggests 

that Chlorine, Dissolved Oxygen, Turbidity, and Calcium were the primary drivers of HDW 

WQI, highlighting the vulnerability of shallow wells to surface contamination and water 

quality deterioration. 
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Table 4: Synaptic weight ANN AMWQI for hand dug well groundwater. 

Predictor H1 H2 H3 H4 H5 

Bias -0.173 -0.123 -0.174 0.389 -0.249 

Total Dissolved Solids -0.318 -0.477 0.476 -0.285 0.199 

Turbidity -0.136 -0.345 -0.506 -0.618 0.588 

pH -0.429 0.451 -0.199 -0.088 0.386 

Dissolved Oxygen -0.989 -0.185 0.768 0.388 -0.258 

BOD -0.030 0.415 0.193 -0.640 -0.667 

Chlorine -1.034 -0.384 0.688 -0.135 -0.022 

Phosphate 0.060 0.186 -0.506 0.256 -0.045 

Nitrate -0.129 0.126 0.473 -0.645 0.127 

Total Hardness -0.254 0.073 0.701 -0.249 0.054 

Calcium 0.706 0.521 -0.669 -0.130 -0.368 

Electric Conductivity 0.662 0.044 0.399 -0.666 0.463 

      

Hidden Neuron Output Weight (AMWQI)    

Bias -0.165    

H1 0.369    

H2 0.213    

H3 -0.578    

H4 -0.007    

H5 0.882    

  

 

Comparison of the two groundwater sources demonstrates a clear distinction: Borehole water 

quality is predominantly influenced by parameters associated with geogenic mineral content 

such as Nitrate, Hardness, and EC, whereas HDW water quality is strongly affected by 

surface-derived contamination indicators including Chlorine, Turbidity, and Dissolved 

Oxygen. These numeric weight patterns provide a quantitative explanation for the differential 

sensitivity of Borehole and HDW water quality to physicochemical parameters and can 

inform targeted monitoring strategies. 

 

Sensitivity Analysis of ANN Models 

The Garson sensitivity analysis of the ANN models provides insight into the relative 

contribution of each physicochemical parameter to the WQI of Boreholes and HDWs (Table 

5). For Borehole water, Nitrate emerged as the most influential parameter, contributing 12.7% 

to the overall WQI, followed closely by Total Hardness at 11.6%, Electric Conductivity at 

11.1%, and Calcium at 10.4%.  
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Table 5: Side-by-Side Garson Sensitivity Table 

Parameter Borehole WQI (%) HDW WQI (%) 

Nitrate 12.7% 7.3% 

Total Hardness 11.6% 6.8% 

Calcium 10.4% 10.5% 

Electric Conductivity 11.1% 11.5% 

Total Dissolved Solids 9.4% 8.8% 

Turbidity 7.3% 10.4% 

pH 8.4% 6.7% 

Dissolved Oxygen 8.1% 11.1% 

BOD 9.0% 9.3% 

Chlorine 5.2% 12.5% 

Phosphate 7.0% 5.0% 

 

These results indicate that the quality of Borehole water is largely determined by the mineral 

content and ionic composition, consistent with the characteristics of deeper aquifers where 

water-rock interactions dominate. Parameters such as Total Dissolved Solids (9.4%), BOD 

(9.0%), and pH (8.4%) had moderate influence, whereas Chlorine (5.2%) and Phosphate 

(7.0%) contributed the least, suggesting that surface-derived contaminants exert minimal 

effect on Borehole water quality. 

In contrast, the HDW WQI was most strongly influenced by parameters associated with 

surface contamination and chemical inputs. Chlorine had the highest contribution at 12.5%, 

followed by Electric Conductivity at 11.5%, Dissolved Oxygen at 11.1%, Calcium at 10.5%, 

and Turbidity at 10.4%. These findings reflect the shallow nature of HDWs, which makes 

them more vulnerable to anthropogenic inputs such as domestic effluents and agricultural 

runoff. Other parameters, including BOD (9.3%) and Total Dissolved Solids (8.8%), had 

moderate effects, while Phosphate (5.0%), Nitrate (7.3%), and pH (6.7%) were less 

influential. 

Comparison between the two groundwater sources highlights a clear distinction in controlling 

factors. Borehole water quality is largely governed by geogenic parameters such as Nitrate, 

Hardness, and Conductivity, reflecting natural mineralization processes in deeper aquifers. 

HDW water quality, however, is primarily influenced by parameters indicative of surface 

contamination, particularly Chlorine, Turbidity, and Dissolved Oxygen, demonstrating the 

higher susceptibility of shallow wells to environmental and anthropogenic impacts. These 

numeric contributions from the Garson analysis provide a quantitative framework to identify 

priority parameters for monitoring and management for each water source, reinforcing the 

importance of source-specific water quality assessment strategies. 
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4. DISCUSSION 

The physicochemical assessment of groundwater from Boreholes and Hand-Dug Wells 

(HDWs) in North Bank, Makurdi, revealed clear differences in water quality that are largely 

attributable to source depth, aquifer composition, and exposure to surface contamination. 

Borehole water exhibited a slightly alkaline pH (7.50 ± 0.79), higher Total Dissolved Solids 

(427.6 ± 176.2 mg/L), and higher electrical conductivity (747.2 ± 492.8 µS/cm), indicating 

greater mineralization resulting from prolonged water–rock interaction within deeper 

aquifers. In contrast, HDWs were less mineralized, with lower pH (6.66 ± 0.76), TDS (267.6 

± 181.8 mg/L), and EC (510.2 ± 321.2 µS/cm), reflecting the limited residence time and 

weaker geochemical buffering typical of shallow groundwater systems. Similar depth-

controlled variations in groundwater chemistry have been reported across Makurdi by Iwar et 

al. (2021), Eneji et al. (2017), and more recently by Tongu et al. (2024), all of whom 

attributed higher mineral content in boreholes to enhanced geogenic influence. 

Organic and nutrient contamination was more pronounced in HDWs, as reflected by higher 

biochemical oxygen demand (48.6 ± 6.4 mg/L) and nitrate concentrations (41.4 ± 24.7 mg/L) 

compared to boreholes (31.5 ± 31.0 mg/L and 30.7 ± 10.9 mg/L, respectively). The 

comparatively lower dissolved oxygen observed in HDWs (5.12 ± 0.19 mg/L) relative to 

boreholes (6.14 ± 1.49 mg/L) likely reflects increased microbial activity and organic matter 

decomposition in shallow aquifers. This pattern is consistent with the findings of Akaahan et 

al. (2015) and Tongu et al. (2024), who reported elevated BOD and nitrate levels in shallow 

wells within Makurdi due to their susceptibility to surface runoff, on-site sanitation systems, 

and improper waste disposal. 

Water Quality Index (WQI) classification further emphasized these contrasts. Borehole 

samples were predominantly classified as “Good” (60%), with 20% rated as “Poor” and 20% 

as “Unsuitable.” In contrast, HDWs showed generally degraded quality, with 60% classified 

as “Poor” and 40% as “Very Poor.” When both sources were integrated, the overall WQI for 

North Bank was estimated at 37.5, corresponding to a “Poor” water quality classification. 

This indicates that, although boreholes generally provide better-quality water, the widespread 

deterioration of HDWs significantly lowers the average groundwater quality in the area. 

Similar WQI patterns, where shallow wells downgrade the overall groundwater status, have 

been documented in Makurdi by Vangeryina et al. (2025), particularly during dry seasons 

when dilution effects are minimal. 

Artificial Neural Network (ANN) modeling further quantified the relative importance of 

individual parameters influencing groundwater quality. For boreholes, Garson sensitivity 
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analysis identified nitrate (12.7%), total hardness (11.6%), electrical conductivity (11.1%), 

and calcium (10.4%) as the most influential parameters, confirming that geogenic mineral 

composition is the dominant control on deep groundwater quality. In contrast, HDW water 

quality was most strongly influenced by chlorine (12.5%), electrical conductivity (11.5%), 

dissolved oxygen (11.1%), calcium (10.5%), and turbidity (10.4%), highlighting the 

dominant role of surface contamination and anthropogenic inputs. These ANN-derived 

insights are consistent with recent multivariate and WQI-based assessments in Makurdi, 

which reported stronger anthropogenic signals in shallow wells compared to boreholes (Eneji 

et al., 2017; Tongu et al., 2024; Vangeryina et al., 2025). 

Importantly, our ANN-based Garson sensitivity results help explain why some sources 

deviate from compliance: for Boreholes, nitrate, Hardness, EC, and calcium were the 

dominant influences on water quality, consistent with deeper aquifer geochemistry and 

studies that report mineral dominance in these systems. For HDWs, parameters like Chlorine, 

EC, DO, and Turbidity were most influential, pointing to surface contamination pathways 

such as runoff and waste leachate, which are also implicated in heavy metal and turbidity 

concerns in River Benue and groundwater contexts around Makurdi.  

When integrated into the Water Quality Index framework, these patterns reinforce prior 

conclusions: while much of Makurdi’s groundwater remains within NSDWQ and WHO 

limits, a significant proportion, especially in shallow wells and during dry seasons, displays 

degraded quality that may not meet domestic use standards without treatment. This is 

reflected in studies where substantial seasonal shifts in WQI occur, with poorer classifications 

expanding in the dry season as dilution effects diminish (Iwar et al., 2021) 

Overall, the findings demonstrate that deep boreholes in North Bank generally provide 

relatively safe, mineral-rich water, whereas shallow hand-dug wells are highly vulnerable to 

contamination, resulting in an overall groundwater quality classified as Poor. The study 

highlights the need for protection, routine monitoring, and treatment of HDWs, while 

reinforcing the role of boreholes as more reliable domestic water sources. These conclusions 

are critical for public health protection, groundwater sustainability, and urban water 

management planning in Makurdi. 

 

5. CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

This study assessed the physicochemical characteristics, Water Quality Index (WQI), and 

Artificial Neural Network (ANN)–based sensitivity of groundwater from boreholes and hand-
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dug wells (HDWs) in North Bank, Makurdi, Benue State. The results revealed clear contrasts 

in groundwater quality between the two sources, largely controlled by aquifer depth, 

geogenic processes, and exposure to surface contamination. 

Borehole water generally exhibited better quality, with slightly alkaline pH, higher mineral 

content, and improved WQI ratings, reflecting dominant geogenic influence and natural 

filtration in deeper aquifers. In contrast, HDWs showed elevated levels of organic and 

nutrient contamination, including higher BOD and nitrate concentrations, reduced dissolved 

oxygen, and poorer WQI classifications. When both sources were integrated, the overall 

groundwater quality for North Bank was classified as Poor (WQI = 37.5), indicating that the 

widespread degradation of shallow wells significantly lowers the average water quality in the 

area. 

ANN modeling and Garson sensitivity analysis further demonstrated that borehole water 

quality is primarily controlled by mineral-related parameters such as nitrate, hardness, 

electrical conductivity, and calcium, whereas HDW quality is strongly influenced by surface-

derived contaminants including chlorine, turbidity, and dissolved oxygen. These findings are 

consistent with previous studies in Makurdi and confirm the heightened vulnerability of 

shallow groundwater systems to anthropogenic activities. 

Overall, the study concludes that while boreholes remain relatively reliable sources of 

domestic water in North Bank, hand-dug wells pose potential health risks if used without 

treatment, underscoring the need for improved groundwater management and protection 

strategies. 

 

5.2 RECOMMENDATIONS 

Drawing from the results of this study, it is advised that increased focus be placed on 

safeguarding and managing shallow groundwater sources in North Bank, Makurdi. Hand-dug 

wells should be properly secured by ensuring they are well-lined, covered, and situated at 

safe distances from potential contamination sources such as pit latrines, refuse sites, and 

drainage systems. Implementing these precautions will help limit the infiltration of surface 

pollutants into shallow aquifers. It is also important to establish routine groundwater quality 

monitoring, especially for hand-dug wells and boreholes previously identified as having poor 

or unsuitable water quality. Regular testing for both physicochemical and microbiological 

parameters will facilitate early detection of contamination and enable prompt action, 

particularly during the dry season when pollutant levels may rise. 
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Water from hand-dug wells should undergo treatment before being used for household 

purposes to reduce health risks. The community should be encouraged to adopt simple water 

treatment methods at home, such as filtration, boiling, and controlled chlorination. While 

boreholes typically yield better quality water, they too require periodic treatment and 

maintenance to consistently meet drinking water standards. Efforts to raise public awareness 

should be intensified to educate residents about safe water handling, improved sanitation, and 

the consequences of improper waste disposal on groundwater quality. Increasing community 

knowledge about the vulnerability of groundwater will help promote behaviors that minimize 

contamination. 

For future groundwater development, urban water supply planning in Makurdi should 

emphasize the construction and regulation of boreholes rather than shallow wells, alongside 

strict enforcement of environmental and groundwater protection measures. Additionally, 

future research should include microbiological assessments, heavy metal testing, and long-

term seasonal monitoring to gain a more thorough understanding of groundwater quality 

trends and to support sustainable management of water resources in the region. 
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