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ABSTRACT

Groundwater remains the primary source of domestic water supply in North Bank, Makurdi,
Nigeria, yet its quality varies with source type and exposure to contamination. This study
assessed the physicochemical characteristics, Water Quality Index (WQI), and parameter
influence on groundwater from boreholes (BHs) and hand-dug wells (HDWSs) using
multivariate analysis and Artificial Neural Network (ANN) modeling. Borehole water
exhibited slightly alkaline conditions (pH 7.50 £ 0.79) with higher mineralization, reflected
by Total Dissolved Solids (427.6 £ 176.2 mg/L) and Electrical Conductivity (747.2 + 492.8
puS/cm), indicating prolonged water—rock interaction within deeper aquifers. In contrast,
HDWs showed lower mineral content (TDS = 267.6 + 181.8 mg/L; EC = 510.2 + 321.2
pS/cm) but elevated indicators of organic and anthropogenic contamination, including
Biochemical Oxygen Demand (48.6 + 6.4 mg/L) and nitrate (41.4 + 24.7 mg/L), alongside
reduced dissolved oxygen (5.12 + 0.19 mg/L). Water Quality Index values ranged from 28.6
to 45.9 for boreholes, classifying them predominantly as Good, while HDWs ranged from
32.1 to 51.4, spanning Good to Poor categories. The integrated mean WQI of 37.5 places
groundwater in North Bank within the Good class overall; however, the presence of Poor-
quality HDWs indicates localized deterioration linked to shallow aquifer vulnerability and
surface contamination. ANN synaptic weight analysis identified nitrate (12.7%), total
hardness (11.6%), electrical conductivity (11.1%), and calcium (10.4%) as dominant drivers

of borehole water quality, reflecting geogenic control. Conversely, HDW quality was most
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influenced by chlorine (12.5%), electrical conductivity (11.5%), dissolved oxygen (11.1%),
calcium (10.5%), and turbidity (10.4%), underscoring the role of anthropogenic inputs. The
findings demonstrate that while boreholes in North Bank generally provide relatively safe
groundwater, hand-dug wells pose significant quality concerns that lower overall water
reliability. Targeted protection, routine monitoring, and appropriate treatment of shallow
wells are therefore essential to safeguard public health and ensure sustainable groundwater

use in Makurdi.

KEYWORDS: Groundwater quality, Water Quality Index (WQI), Artificial Neural Network
(ANN), Boreholes and hand-dug wells, North Bank, Makurdi.

1. INTRODUCTION

Groundwater is a critical freshwater resource that supplies drinking water to nearly half of the
global population and plays an especially vital role in developing countries where surface
water treatment infrastructure is inadequate or unreliable (Foster & Chilton, 2018; Lapworth
et al., 2017). In urban centers across sub-Saharan Africa, groundwater has increasingly
become the primary source of domestic water due to rapid population growth, climate
variability, and the progressive failure of centralized water supply systems (UNESCO, 2019;
Adimalla & Qian, 2019).

The quality of groundwater is intrinsically linked to surface processes through recharge
mechanisms such as rainfall infiltration, river seepage, floodplain inundation, and irrigation
return flow. These surface-to-groundwater interactions create direct pathways through which
contaminants introduced at the land surface or into surface water bodies can migrate into
aquifers (Lapworth et al., 2018; Li et al., 2019). Shallow aquifers in urban floodplain
environments are particularly vulnerable, as permeable soils, high water tables, and seasonal
flooding facilitate rapid contaminant transport from surface water to groundwater systems
(Bhaskar et al., 2020; Brunner et al., 2021).

Surface water bodies, especially rivers, exert a strong control on groundwater quality where
hydraulic connectivity exists. Polluted rivers can act as persistent sources of groundwater
contamination through bank infiltration and hyporheic exchange, particularly during high-
flow events (Foster & Chilton, 2018; Lapworth et al.,, 2017). Under such conditions,
dissolved solids, nutrients, pathogens, and heavy metals present in river water may infiltrate
adjacent aquifers, leading to long-term degradation of groundwater quality (Briffa et al.,
2020; Kumar et al., 2021).
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In Nigeria, groundwater dependence has intensified over the past two decades due to the
declining functionality of public water supply infrastructure. Many state-owned waterworks
operate far below installed capacity or have become completely non-functional because of
poor maintenance, inadequate funding, erratic power supply, aging infrastructure, and weak
institutional management (Akinwale, 2018; World Bank, 2020). As a result, urban residents
increasingly rely on privately constructed boreholes and hand-dug wells, often without proper
hydrogeological assessment or water quality monitoring (Ehirim & Maduka, 2019; Akoteyon
etal., 2019).

Makurdi metropolis presents a clear example of this challenge. The Benue State Greater
Waterworks, which once provided treated surface water from River Benue, has remained
largely non-functional for extended periods, forcing households, institutions, and commercial
establishments to depend almost entirely on groundwater sources for their daily water needs
(lwar et al. 2021; Eneji et al., 2017; Akaahan et al., 2015). This situation has led to a
proliferation of shallow hand-dug wells and boreholes across the city, many of which are
located in close proximity to pollution sources such as septic tanks, refuse dumps, drainage
channels, and polluted surface waters.

The failure of centralized water supply has inadvertently increased pressure on groundwater
resources and heightened the risk of contamination from surface-derived pollutants. In
floodplain cities like Makurdi, where River Benue traverses densely populated areas, river
water contributes significantly to groundwater recharge through bank infiltration and flood-
induced percolation (Eneji et al.,, 2011; Ejembi et al., 2018). However, intensive
anthropogenic activities along the riverbanks, including sand mining, indiscriminate waste
disposal, agricultural runoff, and effluent discharge, have deteriorated river water quality,
increasing the likelihood of contaminant transfer from surface water to groundwater (lwar et
al., 2020; Akaahan et al., 2015).

Studies conducted along the Makurdi stretch of River Benue have reported elevated
concentrations of physicochemical pollutants and trace metals exceeding permissible limits,
raising concerns about secondary groundwater contamination (lwar et al., 2020; Ejembi et al.,
2018). During seasonal flooding events, contaminated river water may infiltrate surrounding
soils and shallow aquifers, facilitating the transport of dissolved solids, nutrients, and heavy
metals into groundwater sources used for drinking and domestic purposes (Lapworth et al.,
2018; Bhaskar et al., 2020).

The growing dependence on groundwater in Makurdi, combined with inadequate regulation
of borehole construction and limited water quality surveillance, poses significant public
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health and environmental risks. Heavy metals and inorganic contaminants introduced at the
surface are of particular concern due to their persistence and potential to accumulate within
aquifer systems (Tchounwou et al., 2018; Briffa et al., 2020). Once groundwater is
contaminated, remediation is technically complex and economically prohibitive, making
prevention and early detection essential (Foster & Chilton, 2018; Kumar & Singh, 2021).
Effective groundwater quality management therefore requires analytical approaches capable
of capturing the complex, nonlinear interactions between surface activities, recharge
processes, and subsurface hydrochemistry. Conventional water quality indices and statistical
methods provide valuable descriptive assessments but are limited in their predictive
capability under dynamic surface-groundwater interaction scenarios (Rana et al., 2018;
Vasistha & Ganguly, 2020). This limitation has driven increasing interest in data-driven
modelling techniques.

Acrtificial Neural Networks (ANNSs) have emerged as powerful tools for groundwater quality
prediction due to their ability to model nonlinear relationships among multiple input variables
without requiring prior assumptions about system behavior (Montgomery, 2018). Multilayer
Perceptron ANN models have been successfully applied to groundwater quality assessment,
water quality index prediction, and contamination risk evaluation in complex hydrogeological
settings (Asadollahfardi et al., 2018; Khudair et al., 2018). Recent studies further demonstrate
that ANN models are particularly effective in capturing the influence of surface-derived
inputs and recharge dynamics on groundwater quality (Elhag et al., 2023; Akakuru et al.,
2023).

Despite these advances, ANN-based predictive modelling of groundwater quality remains
underutilized in Nigerian cities experiencing failure of centralized water supply systems.
There is a clear need for integrated assessment frameworks that combine groundwater quality
evaluation with predictive modelling to support proactive management. Therefore, this study
applies an Artificial Neural Network approach to assess and predict groundwater quality in
Makurdi metropolis, with specific consideration of surface-to-groundwater contamination
pathways and the implications of non-functional public waterworks on groundwater reliance

and vulnerability.

2. MATERIALS AND METHODS
2.1 Study Area
The groundwater sampling locations were georeferenced using representative geographic

coordinates derived from satellite mapping and existing cartographic records of the North
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Bank in Makurdi North area of Makurdi. The selected sites (Figure 1) are distributed between
latitudes 7.786°N and 7.812°N and longitudes 8.531°E and 8.567°E, reflecting the spatial

extent of residential and peri-urban groundwater abstraction points within the study area.

Figure 1: Map of the Study Area

Specifically, the Nigeria Army School of Military Engineering (NASME) Barracks is located
in the northeastern part of North Bank at approximately 7.801°N, 8.567°E, while the Federal
Low-Cost Estate and Federal Housing Estate lie within the central residential corridor of the
area, around 7.792°N, 8.558°E and 7.786°N, 8.552°E, respectively. Court-5 is situated in the
south-central section of North Bank at approximately 7.799°N, 8.545°E, whereas Katungu, a
peri-urban settlement characterized by intense surface—groundwater interaction, is located
closer to the River Benue floodplain at about 7.812°N, 8.531°E.

The spatial distribution of these locations captures variations in land use, population density,
and proximity to the River Benue, which collectively influence groundwater recharge
dynamics and vulnerability to contamination. The coordinates provided represent
approximate central points of each sampling area and are considered adequate for
groundwater quality assessment studies where emphasis is placed on hydrochemical

characterization and spatial trends rather than fine-scale geostatistical modeling.

2.2 Sampling and Laboratory Analysis

Groundwater samples were collected during the dry season from twenty water sources
comprising boreholes and hand-dug wells across five locations: NASME Barracks, Federal
Low-Cost Estate, Federal Housing Estate, Court-5, and Katungu. Standard sampling
procedures were followed, and samples were collected in pre-cleaned 1 L polyethylene

containers and transported to the laboratory for analysis. Physicochemical parameters
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analyzed included pH, turbidity, TDS, EC, DO, BOD, nitrate, chloride, phosphate, calcium,
and total hardness. Analyses were conducted using standard methods recommended by the
World Health Organization (WHO, 2022) and the American Public Health Association
(APHA, 2017).

2.3 Water Quality Index Computation

The Weighted Arithmetic Water Quality Index was employed to assess groundwater
suitability for drinking purposes. Quality ratings (q.) for each parameter were computed
relative to WHO guideline values, and unit weights (W,) were assigned inversely
proportional to the permissible standards. The overall WQI was obtained by aggregating the
weighted quality ratings. Based on WQI values, groundwater quality was classified into five

categories ranging from excellent to unsuitable for drinking.

2.4 Artificial Neural Network Modelling

2.4.1 ANN Architecture and Rationale

A Multilayer Perceptron (MLP) ANN with a feed-forward backpropagation learning
algorithm was adopted for groundwater quality prediction. The choice of MLP was justified
by its proven capability to approximate nonlinear functions and its widespread application in
environmental modelling. Groundwater quality processes are inherently nonlinear due to
complex interactions among physicochemical parameters, making MLP particularly suitable.
The ANN architecture comprised an input layer representing the measured physicochemical
parameters, one hidden layer, and an output layer representing the Water Quality Index. A
single hidden layer was selected to balance model complexity and generalization capability,

as excessively deep networks may lead to overfitting given limited environmental datasets.

2.4.2 Data Preprocessing and Training Strategy

Input data were normalized using standardization to improve convergence and training
stability. The dataset was randomly divided into training (70%), testing (15%), and validation
(15%) subsets to ensure unbiased model evaluation. The hyperbolic tangent activation
function was employed in the hidden layer due to its ability to capture nonlinear
relationships, while a linear activation function was used in the output layer.

Model training was performed using backpropagation with error minimization based on mean
squared error (MSE). Model performance was evaluated using the coefficient of

determination (R2), root mean square error (RMSE), and mean absolute error (MAE). This
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multi-metric evaluation ensured robust assessment of predictive accuracy and generalization

performance.

2.5 Statistical Analysis

Descriptive statistics and correlation analyses were conducted using SPSS software and
Python script. The ANN modelling was implemented using the SPSS neural network module.
Statistical significance was assessed at a 95% confidence level.

3. RESULTS

3.1 Physicochemical Characteristics of Groundwater

Table 1 presents the results of the physicochemical analysis of groundwater from both
Boreholes and Hand-Dug Wells (HDWs). It revealed notable differences in physicochemical
characteristics. The pH of Borehole water averaged 7.50, which is within the World Health
Organization (WHO) recommended range of 6.5-8.5, indicating slightly alkaline but
acceptable conditions. HDW water, however, had a lower average pH of 6.66, still within the

safe range, but closer to neutral acidity.

Table 1. Physicochemical parameters of groundwater.

Parameter | WHO | Boreholes ( % + SD) Hand-dug Wells ( x £ SD)
Limit
pH 6.5~ |7.50x0.79 6.66 + 0.76
8.5
TDS 500 427.60 £176.17 267.60 £ 181.83
(mg/L)
Turbidity | 5.0 404 +1.21 0.91+0.53
(NTU)
EC 1500 | 747.20 £ 492.80 510.20 £ 321.19
(uS/cm)
DO (mg/L) | 8.0 6.14 +1.49 512+0.19
BOD 10.0 |31.51+31.00 48.60 + 6.39
(mg/L)
NOs~ 50 30.72 £ 10.88 41.43 £24.72
(mg/L)
Cl” (mg/L) | 250 128.90 + 68.06 89.17 + 31.31
PO+~ 250 50.50 + 111.53 0.21+0.12
(mg/L)
Total 500 387.20 £ 107.32 100.00 + 37.42
Hardness
(mg/L)
Ca>* 75 41.30 £19.19 23.34+12.92
(mg/L)
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Total Dissolved Solids (TDS) were higher in Boreholes, with a mean of 427.6 mg/L,
compared to 267.6 mg/L in HDWSs. This suggests that deeper groundwater contains more
dissolved minerals, which is consistent with natural leaching of soil and rock. Similarly,
electrical conductivity (EC), a measure of the water’s ionic content, was greater in Boreholes
(747.2 uS/cm) than in HDWs (510.2 uS/cm), confirming the higher mineral content in deeper
sources.

Turbidity, reflecting the presence of suspended particles, was slightly higher in Boreholes
(4.04 NTU) than in HDWs (0.91 NTU), but both remained below the WHO limit of 5 NTU,
indicating clear water overall. Dissolved Oxygen (DO) levels were moderate in both sources,
averaging 6.14 mg/L in Boreholes and 5.12 mg/L in HDWs, suggesting adequate oxygenation
to support aerobic processes.

Biochemical Oxygen Demand (BOD), which indicates the amount of organic matter present,
was substantially higher in HDWs (48.60 mg/L) than in Boreholes (31.51 mg/L), reflecting
greater organic contamination in shallow wells. Nitrate concentrations were also higher in
HDWs (41.43 mg/L) than in Boreholes (30.72 mg/L), although both were below the WHO
limit of 50 mg/L, suggesting some nutrient loading in the shallow water.

Chloride levels were higher in Boreholes (128.90 mg/L) compared to HDWs (89.17 mg/L),
consistent with higher mineral dissolution in deeper aquifers. Phosphate concentrations were
highly variable in Boreholes, with a mean of 50.50 mg/L, while HDWs had negligible
phosphate levels (0.21 mg/L), reflecting minimal surface-derived phosphate contamination.
Hardness, largely determined by calcium and magnesium content, was significantly higher in
Boreholes (387.2 mg/L) than in HDWs (100 mg/L), and calcium concentrations followed the
same trend, 41.3 mg/L in Boreholes versus 23.3 mg/L in HDWs. These findings indicate that
Borehole water is generally harder and richer in dissolved minerals than shallow well water,

which is softer and less mineralized.

3.2 Water Quality Index (WQI) Assessment

The WQI assessment of groundwater sources revealed distinct differences between Boreholes
and HDWs (Table 2). For Borehole water, 60% of the samples were classified as “Good,”
indicating generally acceptable water quality for domestic use, while 20% fell into the “Poor”
category, suggesting some level of contamination or undesirable properties. An additional
20% of Borehole samples were considered “Unsuitable,” highlighting pockets of
groundwater that may pose health risks if consumed without treatment. Notably, no Borehole
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samples were rated as “Excellent” or “Very Poor,” suggesting that while most deep

groundwater is of adequate quality, certain locations experience localized degradation.

Table 2. Water quality index classification of groundwater samples.

Water Excellent Good Poor Very Poor | Unsuitable
Source (%) (%) (%) (%)
Boreholes

Hand-dug

Wells

In contrast, the HDW samples showed a more concerning pattern. Sixty percent of the
samples were classified as “Poor,” reflecting moderate contamination, and 40% fell into the
“Very Poor” category, indicating significant deterioration in water quality. No HDW samples
were rated as “Good” or “Excellent,” and none were deemed “Unsuitable,” suggesting that
while the water is not immediately hazardous, it generally fails to meet optimal standards for
domestic consumption.

The WQI results corroborate the physicochemical findings: Boreholes generally provide
higher-quality water due to their depth and reduced exposure to surface contamination,
whereas HDWs, being shallow and more susceptible to anthropogenic and environmental
inputs, display lower water quality. This trend is consistent with studies in similar
hydrogeological settings, were shallow wells often present higher levels of microbial and
chemical contamination, leading to poorer WQI classifications relative to deep boreholes
(Adewale et al., 2017; Olajire & Ayodele, 2020).

Overall, the WQI classification highlights the need for targeted monitoring and possible
treatment, especially for HDW sources, to ensure safe drinking water and mitigate health

risks associated with suboptimal groundwater quality.

3.3 ANN Model Performance

Figure 2 showed that the MLP-ANN analysis for Borehole groundwater employed seven
hidden neurons, with

synaptic weights linking eleven physicochemical parameters to the hidden layer and

subsequently to the output layer representing the Borehole Water Quality Index (AMWQI).
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Figure 2: Multilayer perceptron network architecture for boreholes WQI.

Examination of the input-to-hidden weights (Table 3) shows that Nitrate had weights ranging
from —0.489 to 0.394 across hidden neurons, Total Hardness ranged from —0.462 to 0.445,
Calcium ranged from —0.429 to 0.493, and Electric Conductivity ranged from —0.436 to
0.436. Other significant contributors included Total Dissolved Solids (—0.479 to 0.378) and
BOD (-0.377 to 0.481). Parameters such as Chlorine (—0.280 to 0.337) and Phosphate (—
0.134 to 0.416) had relatively lower weights across neurons, indicating lesser direct
influence.The hidden-to-output layer weights for Boreholes further modulated the influence
of these neurons on the final AMWQI. H4 and H5 had strong negative contributions of —
0.461 and —0.385, respectively, while H7 and H1 had positive contributions of 0.217 and
0.041. Combined through the network, these synaptic weight patterns indicate that Nitrate,
Total Hardness, Calcium, and Electric Conductivity exerted the largest influence on Borehole
WQI, reflecting the prominent role of mineral content and ionic composition in deeper
aquifers.

Table 3. Synaptic weight ANN AMWQI for boreholes groundwater.

Predictor H1 H2 H3 H4 HS H6 H7

Bias 0393 |0.132 |0.442 |0.180 |0.190 |0.094 |0.422
Nitrate -0.231 |-0.336 | 0.394 |-0.424 |-0.263 |-0.489 | -0.016
Total Hardness 0.407 |0.445 |-0.439 |0.076 |-0.438 |0.042 |-0.462
Calcium -0.340 | -0.280 | -0.067 |0.493 |0.131 |0.165 |-0.429
Electric Conductivity 0436 |-0.106 | 0.311 |0.296 |-0.405 |0.069 |-0.436
Total Dissolved Solids -0.311 | -0.100 |-0.479 |0.272 |-0.221 | -0.360 | 0.378
Turbidity 0.489 |-0.033 |0.297 |0.237 |0.323 |-0.069 |0.189
pH 0417 |-0.487 |0.124 |-0.412 |0.191 |-0.123 | 0.082
Dissolved Oxygen -0.470 | -0.098 |-0.399 |0.144 |-0.346 | 0.153 |0.226
BOD -0.364 | 0.453 |-0.116 |-0.377 |-0.272 |-0.234 | 0.481
Chlorine 0.135 [0.189 |-0.183 |0.337 |0.274 |-0.269 |-0.280
Phosphate 0416 |-0.390 |-0.134 |0.224 |-0.084 | -0.307 |0.324

Www.ijarp.com
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Hidden Neuron | Output Weight (BH-AMWQI)
Bias 0.170

H1 0.041

H2 -0.322

H3 -0.288

H4 -0.461

H5 -0.385

H6 -0.264

H7 0.217

For Hand-Dug Wells (HDWs), the ANN employed five hidden neurons (Figure 3). Input-to-
hidden weights (Table 4) show that Chlorine had large negative weights ranging from —1.034
to 0.688, Dissolved Oxygen ranged from —0.989 to 0.768, Turbidity ranged from —0.618 to
0.588, and Calcium ranged from —0.669 to 0.706. Parameters such as Phosphate (—0.506 to
0.060) and Total Hardness (—0.254 to 0.701) had smaller weights, indicating limited influence
on the hidden layer activations.

= Synaptic weight > 0
Synaptic weight

Figure 3: Multilayer perceptron network architecture for hand dug well WQI.

The hidden-to-output weights further highlighted the relative impact of each neuron: H3 had
a strong negative weight of —0.578, H5 a strong positive weight of 0.882, while H1, H2, and
H4 contributed 0.369, 0.213, and —0.007, respectively. This distribution of weights suggests
that Chlorine, Dissolved Oxygen, Turbidity, and Calcium were the primary drivers of HDW
WQI, highlighting the vulnerability of shallow wells to surface contamination and water

quality deterioration.

Www.ijarp.com
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Table 4: Synaptic weight ANN AMWQI for hand dug well groundwater.

Predictor H1 H2 H3 H4 H5
Bias -0.173 -0.123 -0.174 0.389 -0.249
Total Dissolved Solids -0.318 -0.477 0.476 -0.285 0.199
Turbidity -0.136 -0.345 -0.506 -0.618 0.588
pH -0.429 0.451 -0.199 -0.088 0.386
Dissolved Oxygen -0.989 -0.185 0.768 0.388 -0.258
BOD -0.030 0.415 0.193 -0.640 -0.667
Chlorine -1.034 -0.384 0.688 -0.135 -0.022
Phosphate 0.060 0.186 -0.506 0.256 -0.045
Nitrate -0.129 0.126 0.473 -0.645 0.127
Total Hardness -0.254 0.073 0.701 -0.249 0.054
Calcium 0.706 0.521 -0.669 -0.130 -0.368
Electric Conductivity 0.662 0.044 0.399 -0.666 0.463
Hidden Neuron | Output Weight (AMWQI)

Bias -0.165

H1 0.369

H2 0.213

H3 -0.578

H4 -0.007

H5 0.882

Comparison of the two groundwater sources demonstrates a clear distinction: Borehole water
quality is predominantly influenced by parameters associated with geogenic mineral content
such as Nitrate, Hardness, and EC, whereas HDW water quality is strongly affected by
surface-derived contamination indicators including Chlorine, Turbidity, and Dissolved
Oxygen. These numeric weight patterns provide a quantitative explanation for the differential
sensitivity of Borehole and HDW water quality to physicochemical parameters and can

inform targeted monitoring strategies.

Sensitivity Analysis of ANN Models

The Garson sensitivity analysis of the ANN models provides insight into the relative
contribution of each physicochemical parameter to the WQI of Boreholes and HDWs (Table
5). For Borehole water, Nitrate emerged as the most influential parameter, contributing 12.7%
to the overall WQI, followed closely by Total Hardness at 11.6%, Electric Conductivity at
11.1%, and Calcium at 10.4%.

12
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Table 5: Side-by-Side Garson Sensitivity Table

Parameter Borehole WQI (%0) HDW WQI (%)
Nitrate 12.7% 7.3%
Total Hardness 11.6% 6.8%
Calcium 10.4% 10.5%
Electric Conductivity 11.1% 11.5%
Total Dissolved Solids 9.4% 8.8%
Turbidity 7.3% 10.4%
pH 8.4% 6.7%
Dissolved Oxygen 8.1% 11.1%
BOD 9.0% 9.3%
Chlorine 5.2% 12.5%
Phosphate 7.0% 5.0%

These results indicate that the quality of Borehole water is largely determined by the mineral
content and ionic composition, consistent with the characteristics of deeper aquifers where
water-rock interactions dominate. Parameters such as Total Dissolved Solids (9.4%), BOD
(9.0%), and pH (8.4%) had moderate influence, whereas Chlorine (5.2%) and Phosphate
(7.0%) contributed the least, suggesting that surface-derived contaminants exert minimal
effect on Borehole water quality.

In contrast, the HDW WQI was most strongly influenced by parameters associated with
surface contamination and chemical inputs. Chlorine had the highest contribution at 12.5%,
followed by Electric Conductivity at 11.5%, Dissolved Oxygen at 11.1%, Calcium at 10.5%,
and Turbidity at 10.4%. These findings reflect the shallow nature of HDWSs, which makes
them more vulnerable to anthropogenic inputs such as domestic effluents and agricultural
runoff. Other parameters, including BOD (9.3%) and Total Dissolved Solids (8.8%), had
moderate effects, while Phosphate (5.0%), Nitrate (7.3%), and pH (6.7%) were less
influential.

Comparison between the two groundwater sources highlights a clear distinction in controlling
factors. Borehole water quality is largely governed by geogenic parameters such as Nitrate,
Hardness, and Conductivity, reflecting natural mineralization processes in deeper aquifers.
HDW water quality, however, is primarily influenced by parameters indicative of surface
contamination, particularly Chlorine, Turbidity, and Dissolved Oxygen, demonstrating the
higher susceptibility of shallow wells to environmental and anthropogenic impacts. These
numeric contributions from the Garson analysis provide a quantitative framework to identify
priority parameters for monitoring and management for each water source, reinforcing the

importance of source-specific water quality assessment strategies.
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4. DISCUSSION

The physicochemical assessment of groundwater from Boreholes and Hand-Dug Wells
(HDWs) in North Bank, Makurdi, revealed clear differences in water quality that are largely
attributable to source depth, aquifer composition, and exposure to surface contamination.
Borehole water exhibited a slightly alkaline pH (7.50 £ 0.79), higher Total Dissolved Solids
(427.6 £ 176.2 mg/L), and higher electrical conductivity (747.2 £ 492.8 uS/cm), indicating
greater mineralization resulting from prolonged water—rock interaction within deeper
aquifers. In contrast, HDWs were less mineralized, with lower pH (6.66 + 0.76), TDS (267.6
+ 181.8 mg/L), and EC (510.2 £ 321.2 uS/cm), reflecting the limited residence time and
weaker geochemical buffering typical of shallow groundwater systems. Similar depth-
controlled variations in groundwater chemistry have been reported across Makurdi by Iwar et
al. (2021), Eneji et al. (2017), and more recently by Tongu et al. (2024), all of whom
attributed higher mineral content in boreholes to enhanced geogenic influence.

Organic and nutrient contamination was more pronounced in HDWs, as reflected by higher
biochemical oxygen demand (48.6 + 6.4 mg/L) and nitrate concentrations (41.4 + 24.7 mg/L)
compared to boreholes (31.5 + 31.0 mg/L and 30.7 + 10.9 mg/L, respectively). The
comparatively lower dissolved oxygen observed in HDWs (5.12 = 0.19 mg/L) relative to
boreholes (6.14 = 1.49 mg/L) likely reflects increased microbial activity and organic matter
decomposition in shallow aquifers. This pattern is consistent with the findings of Akaahan et
al. (2015) and Tongu et al. (2024), who reported elevated BOD and nitrate levels in shallow
wells within Makurdi due to their susceptibility to surface runoff, on-site sanitation systems,
and improper waste disposal.

Water Quality Index (WQI) classification further emphasized these contrasts. Borehole
samples were predominantly classified as “Good” (60%), with 20% rated as “Poor” and 20%
as “Unsuitable.” In contrast, HDWs showed generally degraded quality, with 60% classified
as “Poor” and 40% as “Very Poor.” When both sources were integrated, the overall WQI for
North Bank was estimated at 37.5, corresponding to a “Poor” water quality classification.
This indicates that, although boreholes generally provide better-quality water, the widespread
deterioration of HDWs significantly lowers the average groundwater quality in the area.
Similar WQI patterns, where shallow wells downgrade the overall groundwater status, have
been documented in Makurdi by Vangeryina et al. (2025), particularly during dry seasons
when dilution effects are minimal.

Artificial Neural Network (ANN) modeling further quantified the relative importance of
individual parameters influencing groundwater quality. For boreholes, Garson sensitivity
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analysis identified nitrate (12.7%), total hardness (11.6%), electrical conductivity (11.1%),
and calcium (10.4%) as the most influential parameters, confirming that geogenic mineral
composition is the dominant control on deep groundwater quality. In contrast, HDW water
quality was most strongly influenced by chlorine (12.5%), electrical conductivity (11.5%),
dissolved oxygen (11.1%), calcium (10.5%), and turbidity (10.4%), highlighting the
dominant role of surface contamination and anthropogenic inputs. These ANN-derived
insights are consistent with recent multivariate and WQI-based assessments in Makurdi,
which reported stronger anthropogenic signals in shallow wells compared to boreholes (Eneji
etal., 2017; Tongu et al., 2024; Vangeryina et al., 2025).

Importantly, our ANN-based Garson sensitivity results help explain why some sources
deviate from compliance: for Boreholes, nitrate, Hardness, EC, and calcium were the
dominant influences on water quality, consistent with deeper aquifer geochemistry and
studies that report mineral dominance in these systems. For HDWs, parameters like Chlorine,
EC, DO, and Turbidity were most influential, pointing to surface contamination pathways
such as runoff and waste leachate, which are also implicated in heavy metal and turbidity
concerns in River Benue and groundwater contexts around Makurdi.

When integrated into the Water Quality Index framework, these patterns reinforce prior
conclusions: while much of Makurdi’s groundwater remains within NSDWQ and WHO
limits, a significant proportion, especially in shallow wells and during dry seasons, displays
degraded quality that may not meet domestic use standards without treatment. This is
reflected in studies where substantial seasonal shifts in WQI occur, with poorer classifications
expanding in the dry season as dilution effects diminish (Iwar et al., 2021)

Overall, the findings demonstrate that deep boreholes in North Bank generally provide
relatively safe, mineral-rich water, whereas shallow hand-dug wells are highly vulnerable to
contamination, resulting in an overall groundwater quality classified as Poor. The study
highlights the need for protection, routine monitoring, and treatment of HDWSs, while
reinforcing the role of boreholes as more reliable domestic water sources. These conclusions
are critical for public health protection, groundwater sustainability, and urban water

management planning in Makurdi.

5. CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion
This study assessed the physicochemical characteristics, Water Quality Index (WQI), and

Artificial Neural Network (ANN)—based sensitivity of groundwater from boreholes and hand-
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dug wells (HDWs) in North Bank, Makurdi, Benue State. The results revealed clear contrasts
in groundwater quality between the two sources, largely controlled by aquifer depth,
geogenic processes, and exposure to surface contamination.

Borehole water generally exhibited better quality, with slightly alkaline pH, higher mineral
content, and improved WQI ratings, reflecting dominant geogenic influence and natural
filtration in deeper aquifers. In contrast, HDWSs showed elevated levels of organic and
nutrient contamination, including higher BOD and nitrate concentrations, reduced dissolved
oxygen, and poorer WQI classifications. When both sources were integrated, the overall
groundwater quality for North Bank was classified as Poor (WQI = 37.5), indicating that the
widespread degradation of shallow wells significantly lowers the average water quality in the
area.

ANN modeling and Garson sensitivity analysis further demonstrated that borehole water
quality is primarily controlled by mineral-related parameters such as nitrate, hardness,
electrical conductivity, and calcium, whereas HDW quality is strongly influenced by surface-
derived contaminants including chlorine, turbidity, and dissolved oxygen. These findings are
consistent with previous studies in Makurdi and confirm the heightened vulnerability of
shallow groundwater systems to anthropogenic activities.

Overall, the study concludes that while boreholes remain relatively reliable sources of
domestic water in North Bank, hand-dug wells pose potential health risks if used without
treatment, underscoring the need for improved groundwater management and protection

strategies.

5.2 RECOMMENDATIONS

Drawing from the results of this study, it is advised that increased focus be placed on
safeguarding and managing shallow groundwater sources in North Bank, Makurdi. Hand-dug
wells should be properly secured by ensuring they are well-lined, covered, and situated at
safe distances from potential contamination sources such as pit latrines, refuse sites, and
drainage systems. Implementing these precautions will help limit the infiltration of surface
pollutants into shallow aquifers. It is also important to establish routine groundwater quality
monitoring, especially for hand-dug wells and boreholes previously identified as having poor
or unsuitable water quality. Regular testing for both physicochemical and microbiological
parameters will facilitate early detection of contamination and enable prompt action,

particularly during the dry season when pollutant levels may rise.
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Water from hand-dug wells should undergo treatment before being used for household
purposes to reduce health risks. The community should be encouraged to adopt simple water
treatment methods at home, such as filtration, boiling, and controlled chlorination. While
boreholes typically yield better quality water, they too require periodic treatment and
maintenance to consistently meet drinking water standards. Efforts to raise public awareness
should be intensified to educate residents about safe water handling, improved sanitation, and
the consequences of improper waste disposal on groundwater quality. Increasing community
knowledge about the vulnerability of groundwater will help promote behaviors that minimize
contamination.

For future groundwater development, urban water supply planning in Makurdi should
emphasize the construction and regulation of boreholes rather than shallow wells, alongside
strict enforcement of environmental and groundwater protection measures. Additionally,
future research should include microbiological assessments, heavy metal testing, and long-
term seasonal monitoring to gain a more thorough understanding of groundwater quality

trends and to support sustainable management of water resources in the region.
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