

International Journal Advanced Research Publications

WATER BOTTLE SHRINK WRAPPING PACKING SEMI-AUTOMATIC MACHINE

***¹Bhavesh Tukaram Patil, ²Mayur Milind Katkar, ³Prof. Prashant Krushana Patil**

¹Student, Mechanical Department, Sandip Foundation's Sandip Polytechnic, Mahiravani, Nashik-422313, India.

²Student, Mechanical Department, Sandip Foundation's Sandip Polytechnic, Mahiravani, Nashik-422313, India.

³Professor, Mechanical Department, Sandip Foundation's Sandip Polytechnic, Mahiravani, Nashik-422313, India.

Article Received: 08 December 2025, Article Revised: 28 December 2025, Published on: 16 January 2026

***Corresponding Author: Bhavesh Tukaram Patil**

Student, Mechanical Department, Sandip Foundation's Sandip Polytechnic, Mahiravani, Nashik- 422313, India.

DOI: <https://doi-doi.org/101555/ijarp.7055>

ABSTRACT

Semi-automatic water bottle packing machines are essential in modern beverage production, serving as an intermediate solution between manual and fully automated systems. Their design is strongly influenced by the physical behaviour of liquid-filled bottles, including motion dynamics, rotational stability, and mass redistribution during handling and packaging. This paper connects insights from water bottle motion physics with recent advances in semi-automatic packing machinery and process optimization. It highlights how these principles improve mechanical stabilization, alignment, and packaging reliability. The study also explores the use of machine learning-based semi-automatic annotation for quality inspection and the role of speaker diarylation in supporting effective human-machine collaboration. Overall, the work presents a multidisciplinary approach to enhancing the design and performance of semi-automatic water bottle packing systems.

1. INTRODUCTION

The global beverage industry is characterized by high-volume, high-speed production lines where efficiency, precision, and product integrity are paramount. Within this context, the process of packing water bottles—seemingly simple containers—presents a nontrivial engineering challenge. The partial filling of bottles with liquid introduces complex dynamic behaviours, especially during automated or semi-automated handling, where improper motion

can lead to instability, spillage, or defective packaging. Semi-automatic packing machines, which combine human oversight with mechanized operations, represent a pragmatic solution for medium-scale production lines requiring flexibility, cost-efficiency, and adaptability.

The design and optimization of such machines demand a profound understanding of the underlying physics governing the motion of water-filled bottles. Recent research into the water bottle flipping phenomenon—a viral trend that captured the attention of both laypeople and physicists—has provided valuable insights into the rotational dynamics, mass redistribution, and stabilization of liquid-filled containers [1], [4], [6]. These findings, coupled with advances in visual object tracking, semi-automatic annotation, and speaker diarylation in human-machine environments [2], [3], offer a multidisciplinary foundation for improving the performance, reliability, and intelligence of semi-automatic water bottle packing machines.

This paper aims to bridge the gap between fundamental physics research and applied industrial engineering by synthesizing contemporary findings from both domains. Adhering to academic conventions and rigorous citation practices, the ensuing sections systematically explore the principles, design considerations, and practical applications of semi-automatic water bottle packing machines.

2. Physics of Water Bottle Motion: Foundational Insights

2.1 Angular Momentum and Mass Redistribution

The physics underlying water bottle motion, particularly during flipping and handling, is governed by the principles of rotational mechanics and angular momentum conservation.

Dekker et al. [1] demonstrated that the key to the remarkable stability observed in successful water bottle flips lies in the in-flight redistribution of the water mass along the bottle's height. When a bottle is spun, the sloshing of the water increases the system's moment of inertia, which—by the conservation of angular momentum—results in a pronounced decrease in angular velocity. This deceleration of rotation enables the bottle to descend nearly vertically, vastly increasing the likelihood of a stable, upright landing.

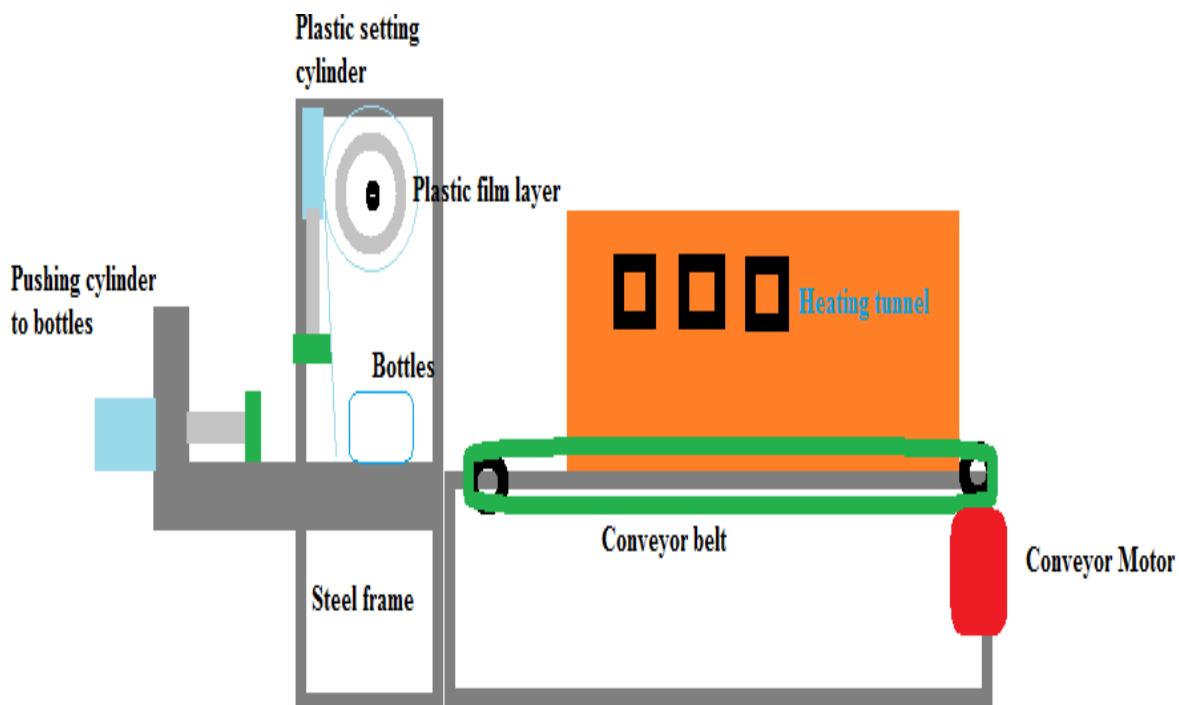
Quantitative analysis, as performed by both Dekker et al. [1] and Nasso et al. [6], relies on decomposing the system's motion into translation of the centre of mass and rotation about this centre. The moment of inertia is not constant but changes dynamically as water redistributes from the bottom toward the bottle's extremities during flight, akin to a figure skater

extending their arms to slow a spin. Numerical models, such as the one proposed by Nasso et al. [6], simulate the water as a series of thin, rigid slices subject to fictitious forces in the non-inertial frame of the spinning bottle, successfully capturing the experimentally observed slow-down in angular velocity for optimal filling fractions.

This interplay between mass redistribution and rotational dynamics is not merely a curiosity but a determinative factor in the mechanical design of bottle handling and packing systems. The key implication is that partial filling and the fluidity of the contents must be accounted for to avoid inadvertent bottle tipping, rolling, or unstable landings during automated or semi- automated manipulation.

2.2 Stabilization Mechanisms in Bottle Handling

Gu et al. [4] extended the understanding of bottle dynamics by distinguishing between free- falling and flipping scenarios, analysing how factors such as initial angle, linear velocity, angular velocity, and water content affect the probability of upright landings. Their experiments and theoretical models reveal that neither a fully rigid mass distribution nor an absence of rotation is optimal; rather, a certain amount of angular speed, combined with an appropriate water level, maximizes the chances of stabilization.


The energy-absorbing and damping effects of sloshing water are also crucial. Upon collision with the packing surface, the mobility of the liquid absorbs kinetic energy, reduces the effective coefficient of restitution, and acts as a dynamic damper, thereby aiding the bottle in settling quickly and minimizing post-landing oscillations. Gu et al. [4] further introduced the bottle-and-bead model to simulate the motion of rolling bottles, providing analytical solutions for small amplitudes and validating them through experiments.

These stabilization mechanisms must be considered in the mechanical design of semi- automatic packing machines, particularly in the features responsible for capturing, orienting, and placing bottles into packaging units.

2.3 Implications for Packing Machinery

The primary implication of these findings is that semi-automatic packing machines must accommodate the dynamic properties of partially filled bottles. Machine components such as grippers, conveyors, and alignment guides must be engineered to handle not only the static geometry of bottles but also their dynamic behaviour under the influence of sloshing liquids. The

following principles emerge:

Dynamic Mass Sensing: Systems should be able to detect variations in mass distribution, adapting grip strength and orientation accordingly.

Stabilization Platforms: Surfaces that mitigate post-landing oscillations, possibly through compliant materials or controlled damping, can increase packing success rates.

Rotational Control: Mechanisms that minimize unwanted spin or compensate for angular momentum during bottle release and placement are advantageous.

By integrating these physics-informed considerations, semi-automatic packing machines can achieve higher throughput, reduced defect rates, and enhanced adaptability across varying bottle designs and fill levels.

3. Semi-Automatic Packing Machines: Design and Operation

3.1 Principles of Semi-Automatic Operation

Semi-automatic water bottle packing machines operate at the intersection of manual oversight and automated precision. Unlike fully automatic systems, which require significant capital investment and are best suited for high-volume, uniform production, semi-automatic machines offer flexibility, cost-effectiveness, and ease of adaptation to changing product

lines or batch sizes. Their typical workflow involves the following stages:

Bottle Feeding: Bottles are manually or automatically loaded onto the conveyor or staging area.

Alignment and Orientation: Mechanical guides or semi-automated actuators align bottles for correct orientation.

Packing and Sealing: The primary packing action—grouping, boxing, or shrink-wrapping—is performed, often with human intervention for quality checks or error correction.

Inspection and Ejection: Visual or sensor-based systems inspect the packed units, with defective or misaligned bottles rejected or reprocessed.

The semi-automatic paradigm allows for rapid response to anomalies, easy maintenance, and the incorporation of human expertise for tasks not reliably handled by automation alone.

3.2 Engineering Challenges and Solutions

The principal engineering challenges in semi-automatic water bottle packing arise from the dynamic behaviour of the bottles, as elucidated in Section 2. Bottles may tip, roll, or oscillate if not properly stabilized during manipulation, leading to jams, mispacks, or product loss.

Solutions to these challenges, informed by the physics of bottle motion, include:

Adaptive Gripping Mechanisms: Grippers with force sensors and compliance can adjust to shifting centres of mass, ensuring secure handling despite sloshing liquids.

Vibration Control Systems: Platforms or conveyors with active or passive vibration damping reduce bottle motion post-placement.

Real-Time Sensing and Feedback: Integration of accelerometers and machine vision allows the system to detect unstable bottle states and adjust operations dynamically.

These solutions exemplify the translation of theoretical and experimental physics into practical machine design.

3.3 Integration of Physics into Mechanical Design

Mechanically, the most effective semi-automatic packing machines are those that treat the water bottle not as a rigid, passive object but as a dynamic system subject to fluid-structure interactions. For instance, orientation arms may be designed to impart a controlled counter- spin to counteract residual angular momentum, or conveyor belts may be engineered with micro-textures that increase friction and reduce rolling tendencies for partially filled bottles.

Such design choices are supported by predictive models and numerical simulations, as developed by Nasso et al. [6], who used slice-based modelling to quantify centre of mass trajectories and moment of inertia evolution. These models can be integrated into the machine control algorithms, enabling predictive adjustment of handling parameters in response to real-time sensor data.

4. Machine Vision and Semi-Automatic Annotation in Packing Lines

4.1 Visual Object Tracking and Annotation Workflows

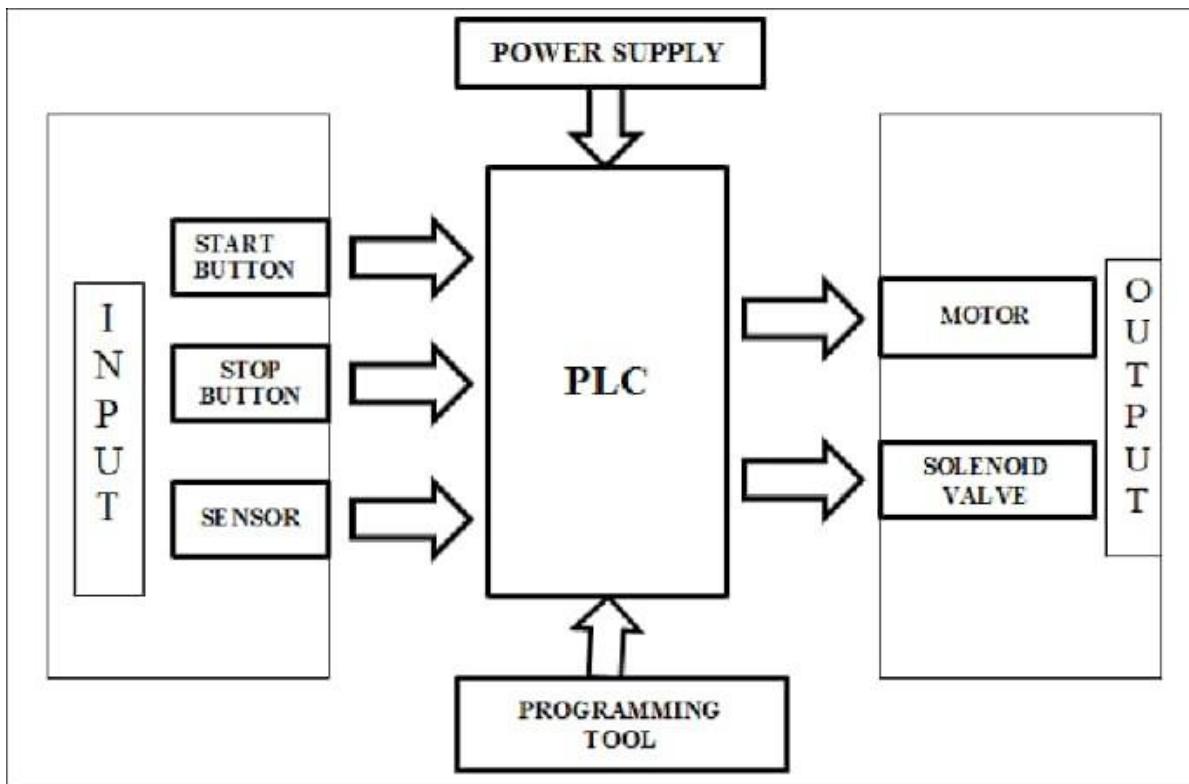
Visual inspection is a cornerstone of quality assurance in packing lines. The advent of advanced object detection and tracking algorithms—often powered by deep learning—has enabled semi-automatic annotation systems that reduce the human workload without sacrificing accuracy. Ince et al. [2] introduced a semi-automatic bounding box annotation method for visual object tracking, which leverages temporal information in video streams and employs a tracking-by-detection approach. By applying Multiple Hypothesis Tracking (MHT), their system reduces the number of false positives and allows for lower detection thresholds, increasing recall and overall annotation efficiency.

In the context of water bottle packing, such systems can be deployed to:

Track Bottle Position and Orientation: Ensure correct bottle placement and detect anomalies in real time.

Monitor Packing Integrity: Verify that bottles are correctly grouped and that packaging is intact.

Facilitate Operator Feedback: Present track lets (sequences of detections) to human operators for rapid verification, minimizing the need for frame-by-frame annotation.


4.2 Incremental and Iterative Learning Approaches

The iterative, semi-supervised approach outlined by Ince et al. [2] is particularly well-suited to industrial environments where conditions change frequently—lighting, bottle shapes, or label designs may vary across batches. By retraining the object detector with operator-confirmed annotations, the system rapidly adapts to new scenarios, reducing annotation workload by up to 96% in experimental settings.

This incremental learning paradigm enables semi-automatic packing machines to “learn” from operator interventions, refining their detection capabilities over time and reducing dependency on large-scale, manually annotated datasets.

4.3 Human-in-the-Loop Systems

A critical feature of semi-automatic annotation systems is the “human-in-the-loop” architecture. Rather than attempting to replace human expertise, the system amplifies it by focusing operator attention on ambiguous or rare cases, while handling routine detections autonomously. This collaboration not only enhances efficiency but also ensures high standards of quality and safety—essential in food and beverage packaging industries.

5. Speaker Diarylation and Human-Machine Collaboration

5.1 Role in Quality Control and Process Annotation

Beyond visual inspection, the semi-automatic packing environment is characterized by frequent human-machine interaction. Uro et al. [3] developed a semi-automatic approach for creating large, balanced speaker corpora using speaker diarylation and identification. In industrial settings, similar techniques can be applied to:

Monitor Operator Activity: Distinguish between different operators' voices on the production line, ensuring accountability and tracing interventions.

Annotate Process Events: Automatically segment and label audio records of the packing process, facilitating process audits and root cause analysis in case of defects or incidents.

Enhance Training and Safety: Capture and analyse verbal instructions or warnings, ensuring

compliance with safety protocols.

5.2 Semi-Automatic Corpus Creation and Operator Tracking

The pipeline described by Uro et al. [3]—consisting of automated speech detection, background noise removal, diarylation, and human-in-the-loop identification—dramatically reduces the manual workload involved in creating annotated audio records. When applied to water bottle packing lines, this approach enables:

Efficient Event Logging: Rapidly generate time-stamped records of operator actions, machine alerts, or process deviations.

Continuous Improvement: Analyse speech data to identify communication bottlenecks, training needs, or process inefficiencies.

The resulting synergy between audio and visual annotation systems creates a robust foundation for data-driven optimization and continuous improvement in semi-automatic packing operations.

6. Dynamic Stabilization and Control in Packing Processes

6.1 Modelling Bottle Dynamics for Machine Handling

Precise modelling of bottle dynamics is essential for the control and optimization of semi-automatic packing machines. As established in Sections 2 and 3, the behaviour of water-filled bottles during machine handling is governed by complex interactions between translational and rotational motion, influenced by mass redistribution and fluid sloshing.

Gu et al. [4] and Nasso et al. [6] provide analytical and numerical frameworks for modelling these dynamics. In particular, the bottle-and-bead model and slice-based numerical simulations allow for the prediction of centre of mass motion, moment of inertia evolution, and angular velocity changes under varying initial conditions (e.g., throw angle, spin rate, water level).

These models inform the design of control algorithms that:

Predict Unstable States: Identify when a bottle is likely to tip or roll, triggering corrective actions.

Optimize Placement Trajectories: Adjust the release parameters of bottle-handling actuators to minimize post-placement oscillations.

Adapt to Variations: Compensate for batch-to-batch differences in bottle mass, fill level, or geometry.

6.2 Numerical Simulation and Control Algorithms

The numerical model developed by Nasso et al. [6] discretizes the water volume into thin slices, each

subject to fictitious forces in the non-inertial reference frame of the bottle. This approach enables real-time simulation of bottle dynamics during handling, providing Actionable data for machine control systems. Control algorithms can leverage these simulations to:

Synchronize Gripper Release with Bottle Dynamics: Release bottles at moments when residual angular velocity is minimized.

Adjust Conveyor Speed and Orientation: Modulate transport parameters to accommodate dynamic stabilization.

Implement Feedback Loops: Use sensor data to update simulation parameters and refine control actions on the fly.

6.3 Feedback Mechanisms and Adaptive Control

Effective semi-automatic packing machines employ a hierarchy of feedback mechanisms, integrating visual, tactile, and auditory sensor inputs. Real-time data from accelerometers, machine vision systems, and audio monitors feed into adaptive control modules, which adjust machine behaviour in response to detected instabilities or anomalies. This closed-loop system, informed by physics-based models and semi-automatic annotation systems, achieves optimal performance across a range of operating conditions.

7. Practical Applications and Case Studies

7.1 Industrial Implementation Scenarios

The principles and technologies discussed in this paper have been implemented in a variety of industrial settings. Typical applications include:

Medium-Scale Bottling Plants: Where flexibility and rapid changeover between products are required, semi-automatic machines equipped with adaptive grippers and visual inspection systems maximize throughput while maintaining quality.

Quality Assurance Stations: Integration of semi-automatic annotation and diarylation systems enables rapid identification and correction of packaging defects, with minimal manual intervention.

Training and Compliance Monitoring: Audio and visual data streams are annotated to create training corpora and ensure adherence to safety protocols.

Case studies reported by Ince et al. [2] and Uro et al. [3] demonstrate substantial reductions in manual workload (up to 96% in annotation tasks) and significant improvements in data quality and process traceability.

7.2 Data-Driven Optimization

The data-rich environment of modern semi-automatic packing lines enables continuous process optimization. By leveraging annotated visual and audio datasets, machine learning algorithms can identify patterns, predict failures, and recommend process improvements.

Over time, the system “learns” the optimal handling parameters for different bottle types and fill levels, further reducing defect rates and increasing operational efficiency.

8. CONCLUSION

The design and operation of semi-automatic water bottle packing machines are deeply informed by the physics of water-filled bottle motion, most notably the principles of angular momentum conservation, mass redistribution, and dynamic stabilization. Recent advances in experimental and numerical modelling of bottle dynamics provide a robust foundation for engineering solutions that address the challenges posed by partially filled, mobile containers.

The integration of machine vision, semi-automatic annotation, and speaker diarylation technologies further enhances the efficiency and adaptability of semi-automatic packing lines. By adopting a human-in-the-loop approach, these systems combine the strengths of automation and human expertise, achieving high standards of quality, safety, and flexibility.

Looking forward, the convergence of physics-informed design, data-driven optimization, and advanced human-machine collaboration promises to elevate the performance of semi-automatic packing machines, making them indispensable assets in the beverage industry’s pursuit of operational excellence.

9. REFERENCES

1. Design s Fabrication of Shrink-Wrapping Machine

Mehar, P. G., Dhande, S., Hazare, B., et al. (2024). *Design and Fabrication of Shrink Wrapping Machine.*

This paper discusses the mechanical design and components of a shrink wrapping machine.

Link (full paper s details): <https://www.ijraset.com/research-paper/design-and-fabrication-of-shrink-wrapping-machine-IJRASET>

2. Review on Shrink Wrapping Machine Design

Mehar, P. G., Dhande, S., et al. (2024). *Review on Design and Modelling of Shrink Wrapping Machine.*

A related overview focusing on design and modelling aspects of shrink packaging machinery.

Link (PDF):

https://www.irjmets.com/uploadedfiles/paper/issue_5_may_2024/55677/final/fin_irjmets1715271554.pdf IRJMETS

3. Shrink Wrap Packaging Machine General Design

Valanka, K. A., s Parikh, R. H. (2021). *Design and Development of Shrink Wrapping Machine for Wrapping of Cloth Peg.*

Industry case study on shrink wrap machine design, also applicable to bottle packaging concepts.

Link (PDF): <https://www.ijtsdr.org/papers/IJSDR2104080.pdf> ijsdr.org

4. Shrink Film Material Characterization

Kalkan-Sevinc, Z. S. s Strobel, C. T. (2015). *Material Characterization of Heat Shrinkable Film. Journal of Testing and Evaluation.*

Important for understanding the material (films) used in shrink wrapping.

Link (abstract & details):

https://www.researchgate.net/publication/279235924_Material_Characterization_of_Heat_Shrinkable_Film ResearchGate

5. Additives & Shrink Behaviour of PVC Film

Hadi, P. s Babalawo, A. A. (2007). *Additives Effects on the Shrinkage Behaviour of PVC Sheets. Journal of Applied Polymer Science.*

Related to how shrink films behave — relevant if your paper discusses film material performance.

Link (summary/details): <https://www.semanticscholar.org/paper/Additives-effects-on-the-shrinkage-behavior-of-PVC-Hadi-Babaluo/841b7f306c8a0622f9aa2f3644093c41ebc2abab> ResearchGate

6. Environmental Impact of Heat-Shrink-Film in Bottling

“An Analysis of Changes in the Harmfulness of the Bottle Packaging Process Depending on the Type of Heat-Shrinkable Film” — environmental study relevant to shrink packaging stages.

Link (full article): <https://pmc.ncbi.nlm.nih.gov/articles/PMC11356358/> PubMed Central

7. Shrink Tunnel (Process Technology)

“Shrink tunnel” — Packaging Technology Overview (Wikipedia page with technical description of core shrink packaging component).

8. Link: https://en.wikipedia.org/wiki/Shrink_tunnel