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ABSTRACT:

Road infrastructure monitoring and vehicle safety analysis increasingly rely on data-driven
approaches derived from vehicular sensors. Passive Vehicular Sensors (PVS) generate high-
dimensional, multi-modal time-series data that can be leveraged to detect road-quality
anomalies and abnormal driving conditions. However, the lack of interpretability in many
machine learning (ML) and deep learning (DL) models limits their adoption in safety-critical
applications. This paper proposes an Explainable Artificial Intelligence—based Anomaly
Detection System (XAI-ADS) for PVS data. The framework integrates classical ML models
(Random Forest, XGBoost, Decision Tree) and a deep learning Multi-Layer Perceptron
(MLP), coupled with post-hoc explainability techniques such as SHAP and LIME. A
complete end-to-end pipeline—covering data exploration, preprocessing, model training with
cross-validation, explainability, and real-time deployment via FastAPl—is presented.
Experimental results demonstrate that tree-based ensemble models achieve strong macro-F1
performance, while XAl methods provide transparent insights into sensor contributions,

enhancing trust and deployability.

KEYWORDS: Explainable Al, Anomaly Detection, Passive Vehicular Sensors, Machine
Learning, SHAP, LIME, FastAPI.

I. INTRODUCTION
The rapid proliferation of smart vehicles and intelligent transportation systems has led to the

widespread adoption of onboard sensors such as accelerometers, gyroscopes, magnetometers,
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temperature sensors, and GPS modules. These Passive Vehicular Sensors (PVS) continuously
capture signals that reflect road conditions, vehicle dynamics, and environmental factors.
Detecting anomalies in such data is crucial for applications including road quality

assessment, predictive maintenance, and accident prevention.

Traditional anomaly detection techniques struggle with high-dimensional sensor data and
complex nonlinear relationships. Machine learning and deep learning approaches have shown
promise; however, their black-box nature raises concerns regarding transparency, reliability,
and regulatory compliance. Explainable Al (XAIl) addresses this gap by providing human-
interpretable explanations for model decisions.

This work presents an XAl-enabled anomaly detection framework for PVS data, featuring a
unified machine learning and deep learning pipeline for multi-sensor data analysis,
integration of global (SHAP) and local (LIME) explainability methods, a reproducible
training and evaluation workflow with cross-validation and early stopping, and a deployable
architecture using FastAPl with a web-based frontend for real-time inference and

explanation.

Il. LITERATURE SURVEY

Research on automatic road-condition monitoring and anomaly detection using on-board
sensors spans several complementary areas: sensing systems and datasets, supervised and
unsupervised learning for time-series/tabular sensor data, and explainability (XAI) methods
for model transparency. This section reviews representative work across these threads and

highlights gaps that motivate the present XGBoost-centered, explainable pipeline.

A. Sensing approaches and datasets for road / anomaly detection

Early and continuing work on road-anomaly detection frequently leverages inertial sensors
(accelerometers, gyroscopes), magnetometers, and GPS available in smartphones or
dedicated vehicle-mounted units. These studies show that vibration signatures caused by
potholes, speed bumps, and other surface irregularities are reliably observable in
accelerometer and gyroscope channels and can be localized using GPS coordinates. Several
prototype and field studies demonstrate practical pothole and bump detection using
smartphone sensor streams, feature extraction (time/frequency domain statistics), and

supervised classification [Pawar et al.; other applied works.
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Comprehensive surveys summarize methods and challenges specific to smartphone- or
vehicle-based sensing: these reviews compare sensor placements, preprocessing strategies
(resampling, filtering), feature sets (statistical moments, spectral features, wavelets), and
annotation strategies for event labeling; they also stress difficulties such as noisy
measurements, device mounting variability, and heterogeneous sampling rates in real-world
deployments. Such surveys provide useful design guidance for building robust PVS datasets

and motivate careful preprocessing and stratified evaluation used in this work.

Although public, large-scale standard datasets for Passive Vehicular Sensor (PVS) anomaly
detection are less ubiquitous than in vision or speech, several field datasets and crowdsourced
collections exist in the literature and industry prototypes. These datasets typically contain
multi-sensor time windows aligned to labelled road events and are used to benchmark feature
engineering and classifier performance in realistic conditions [applied pothole / mobile
sensing literature]. The present study follows these practical conventions—multi-sensor
feature aggregation, alignment of sensor and label CSVs, and stratified train/test splits—to

ensure comparability and reproducibility.

B. Learning algorithms for vehicular and sensor data — why XGBoost

For tabular, structured sensor data, tree-based ensemble methods have established a strong
empirical track record. Random Forests and Gradient Boosting Decision Trees (GBDTSs) are
widely used when feature engineering produces a fixed-length representation (statistical or
aggregated features from time windows), offering robustness to outliers, mixed data types,
and moderate amounts of noise. Among GBDT implementations, XGBoost introduced
several algorithmic and systems-level optimizations—sparsity-aware learning, weighted
quantile sketching, and cache-efficient implementations—that improve scalability and
predictive performance on real-world tabular tasks [Chen & Guestrin]. XGBoost’s built-in
regularization (tree complexity penalties) and its ability to handle missing values make it
particularly suitable for noisy PVS datasets where sensor dropouts or intermittent GPS

availability may occur.

Comparative studies in other tabular sensing domains (industrial sensors, health monitoring)
typically find that properly-tuned gradient-boosted trees match or outperform deep models
when labelled data is limited and feature engineering can capture relevant temporal statistics;
deep architectures (CNNs, LSTMs) tend to show advantages as the amount of labelled
sequential data grows and when end-to-end temporal modeling is critical [general ML

www.ijarp.com (



http://www.ijarp.com/

International Journal Advanced Research Publications

literature]. In road-anomaly detection specifically, some works apply neural networks
(including CNN and LSTM hybrids) to raw or windowed time-series and report
improvements when abundant, well-annotated sequence data are available. However, the
higher annotation, training-time, and deployment complexity of deep models often favours
tree ensembles in production-sensitive or resource-constrained vehicular systems. This
pragmatic trade-off motivates our choice of XGBoost as the primary production classifier

while keeping a deep MLP pipeline available for comparative research.

Key practical aspects of using XGBoost for PVS data include: (1) hyperparameter
regularization to mitigate overfitting on noisy features, (2) stratified cross-validation with
macro-F1 selection to account for class imbalance in anomaly labels, and (3) integration with
tree-specific explainers (see next subsection) for efficient attribution computation. These
properties make XGBoost a strong candidate for trustworthy anomaly detection in vehicular

applications.

C. Deep temporal models and hybrid approaches

While XGBoost excels on aggregated/tabular representations, temporal models such as
convolutional neural networks (CNNs), recurrent neural networks (RNNs — LSTM/GRU),
and transformer variants are natural choices for raw, high-frequency sensor streams. Several
studies demonstrate that CNN-RNN hybrids capture local temporal patterns (e.g., the
signature of a pothole event) more effectively than static feature-based classifiers when the
dataset includes long continuous traces and dense labelling. The downside is increased data
and compute needs, along with reduced out-of-the-box interpretability. Recent research has
therefore explored hybrid pipelines combining temporal feature learning with tree-based
classifiers (feature extractor + XGBoost) or distilled surrogate models that preserve
performance while improving deployability. Our framework is compatible with such
hybridization: the MLP temporal baseline can be extended to sequence models and used

either standalone or as a feature extractor for XGBoost.

D. Explainable Al (XAl): LIME, SHAP and tree-local explainers

Explainability is essential in safety-critical sensing systems—operators and stakeholders must
understand why a detection was made before acting on it (e.g., scheduling road repair, issuing
an alert). Two widely-adopted explainability methods are LIME and SHAP. LIME provides
local, model-agnostic explanations by fitting an interpretable surrogate model around a single
prediction; its modularity and simplicity make it useful for instance-level debugging and
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human-in-the-loop validation [Ribeiro et al.]. SHAP offers a unified, theoretically-grounded

framework based on Shapley values from cooperative game theory; for tree ensembles,

TreeExplainer computes exact or fast approximate Shapley attributions efficiently, making

SHAP practical for both global feature importance analyses and local instance-level

explanations for XGBoost models [Lundberg & Lee].

Applied studies outside vehicular sensing have shown the operational value of combining

global (feature importance, dependence plots) and local explanations (saliency for individual

cases) in domains like healthcare and finance. In vehicular sensing, integrating SHAP and

LIME helps validate that model attributions correspond to physically plausible sensor

signatures (e.g., suspension accelerations dominating pothole predictions) rather than

spurious correlations. TreeExplainer’s efficiency is particularly advantageous when deployed

explainability is required for on-demand API explanations in low-latency systems.

Comparative Analysis of Existing Al-Based Anomaly Detection Approaches vs. Proposed

XGBoost-Based Framework

Table 1: Comparative Analysis of Existing Al-Based Anomaly Detection Approaches vs.

Proposed XGBoost-Based Framework.

Study Focus Approach Key Limitations
Contribution
Smartphone-based | Road anomaly | SVM, k-NN Low-cost solution | Poor
Road  Anomaly | detection  using for road condition | interpretability,
Detection (Pawar | smartphones monitoring sensitive to noise
etal)
Traditional ML for | Vehicle sensor- | Random Forest, | Fast training, | Lower accuracy,
Vehicular Sensors | based anomaly | Decision Tree interpretable weak
detection models generalization
Deep  Learning- | Temporal pattern | CNN, LSTM Captures complex | High computational
Based Road | detection in sensor temporal cost, black-box
Condition data dependencies model
Detection
Hybrid CNN- | Multi-sensor CNN + LSTM | High accuracy on | Requires large
RNN Models vehicle anomaly large datasets labeled  datasets,
detection opaque decisions
Unsupervised Label-free Autoencoders, | Detects anomalies | Hard to interpret
Anomaly anomaly detection | Isolation Forest | without labeled | results
Detection data
Proposed PVS-based XGBoost + | High  accuracy, | Performance
Framework (This | anomaly detection | SHAP/LIME interpretable, depends on quality
Work) with deployable, of feature
interpretability efficient engineering
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I1l. METHODOLOGY

The proposed framework presents an interpretable machine learning pipeline for detecting
anomalies in Passive Vehicular Sensor (PVS) data using the XGBoost algorithm. The
methodology is designed to ensure high detection accuracy, robustness to noisy sensor data,
and model transparency through integrated explainability techniques. The framework consists
of five major components: (1) PVS data acquisition and preprocessing, (2) feature
engineering and selection, (3) XGBoost-based anomaly detection, (4) explainability
integration using SHAP and LIME, and (5) deployment and inference architecture.

A. PVS Data Acquisition and Preprocessing

Passive Vehicular Sensor (PVS) data is collected from multiple vehicle-mounted sensors,
including accelerometers, gyroscopes, magnetometers, temperature sensors, and GPS
modules. Sensor readings are captured from different mounting locations such as the
dashboard, above-suspension, and below-suspension positions to capture diverse vehicle
dynamics.

The preprocessing stage involves:

e Removal of corrupted and inconsistent records

e Alignment and synchronization of sensor readings with anomaly labels

e Handling of missing values and outliers

e Stratified train—test splitting (70:30)

e Feature normalization using z-score standardization

This step ensures data consistency and prepares a clean feature matrix suitable for supervised

learning.

B. Feature Engineering and Representation

From the raw multi-sensor streams, statistical and contextual features are extracted to
represent vehicle behaviour effectively. These include:

e Mean, variance, and peak values of acceleration and gyroscope signals

e Orientation-specific vibration patterns near suspension components

e \ehicle speed and GPS-based contextual attributes

Let

X ={xpx5...20)
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denote the extracted feature vectors, where each vector represents a fixed-length summary of
sensor behavior over a given time window. This transformation enables efficient learning
using tree-based models such as XGBoost.

C. XGBoost-Based Anomaly Detection Model

The core classification module employs Extreme Gradient Boosting (XGBoost), a powerful
ensemble learning algorithm based on gradient-boosted decision trees. XGBoost is selected
due to its effectiveness on structured sensor data and built-in regularization mechanisms.

The objective function optimized by XGBoost is defined as:
£=D 35 + ), 0f)

where:

e I(y.¥:)is the classification loss function

e 0(f)represents the regularization term controlling tree complexity

Key hyperparameters such as tree depth, learning rate, and number of estimators are tuned
using stratified k-fold cross-validation. The final model is selected based on macro-averaged

F1-score, ensuring balanced performance across anomaly classes.
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Fig 1: XAl-Enabled XGBoost-Based Anomaly Detection Workflow for Photovoltaic

Systems
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D. Explainability and Interpretability Module

To address the black-box nature of ensemble models, the framework integrates Explainable
Artificial Intelligence (XAI) techniques:

1) Global Explainability (SHAP)

SHapley Additive exPlanations (SHAP) are used to compute global feature importance.
SHAP TreeExplainer efficiently assigns contribution scores to each feature, revealing which
PVS sensors most influence anomaly predictions.

2) Local Explainability (LIME)

Local Interpretable Model-agnostic Explanations (LIME) provide instance-level explanations
by approximating the XGBoost model with an interpretable surrogate. This enables human-
understandable reasoning for individual anomaly predictions.Together, SHAP and LIME

ensure model transparency, trustworthiness, and diagnostic validation.

E. Deployment and Inference Architecture

The trained XGBoost model, preprocessing scaler, and explainability artifacts are serialized
and deployed using a FastAPI-based backend. The deployment framework supports:

The system supports real-time prediction requests, enabling users to obtain instant inference
results for uploaded or streamed input data. It also allows retrieval of feature metadata,
helping users understand the role, type, and importance of each input feature used by the
model. Additionally, the system provides on-demand SHAP and LIME explanations, offering
interpretable insights into individual predictions by highlighting how specific features
influence the model’s decision in a clear and user-friendly manner. A lightweight web-based
frontend enables users to input sensor values, visualize predictions, and interpret model
decisions. This end-to-end deployment ensures seamless integration of anomaly detection and

explainability in real-world vehicular monitoring systems.

IV. EXPERIMENTAL SETUP

This section describes the dataset characteristics, implementation environment, model
configuration, evaluation metrics, and baseline comparisons used to validate the proposed
interpretable XGBoost-based PVS anomaly detection framework.

A. Dataset Description

The experiments are conducted on a Passive Vehicular Sensor (PVS) dataset consisting of
multi-modal sensor readings collected from vehicles operating under real-world driving

conditions. The dataset includes time-synchronized measurements from:
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e Accelerometer (X, Y, z axes)
e Gyroscope (X, Y, Z axes)

e Magnetometer

e \hicle speed sensor

e GPS (latitude, longitude)

e Ambient temperature sensor

Each sensor sample is labeled as Normal or Anomalous, where anomalies correspond to
abnormal vehicle behaviors such as road surface irregularities, sudden vibrations, or

mechanical disturbances.

The dataset is segmented into fixed-length sliding windows, with statistical features extracted
per window to construct a structured feature matrix.The dataset consists of approximately N
sensor windows, with X% normal and Y% anomalous samples. Each window spans T
seconds with a sampling frequency of Fs Hz, resulting in a fixed-length feature
representation. Class imbalance is addressed using stratified splits and macro-averaged

evaluation metrics.
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Fig 2 : XGBoost Model Architecture

This figure illustrates the working process of the XGBoost algorithm. Input data is first
preprocessed and then passed through multiple decision trees built sequentially using gradient
boosting. Each tree corrects the errors of the previous trees, and the final prediction is
obtained by combining outputs from all trees. This boosting mechanism improves accuracy

and reduces bias.
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Error

Iterations

Fig 3: Sample Decision Tree from XGBoost

This figure represents a single decision tree generated by the XGBoost model. Each internal
node shows a feature-based condition, while leaf nodes represent prediction scores. XGBoost
combines many such shallow trees to form a strong predictive model, making it both

powerful and interpretable.
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Fig 4: Feature Importance Plot

This plot shows the relative importance of input features used by the XGBoost model.
Features with higher importance contribute more significantly to the prediction process. This
analysis helps in understanding which attributes influence the model’s decisions the most and

improves model interpretability.

V. RESULTS AND DISCUSSIONS

This section presents the quantitative and qualitative evaluation of the proposed XGBoost-
based interpretable anomaly detection framework using Passive Vehicular Sensor (PVS) data.
The proposed model is compared against baseline machine learning approaches to
demonstrate its effectiveness.
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A. Performance Comparison with Baseline Models

Table 2: Performance Comparison of Different Models.

Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%0)
Logistic Regression | 87.3 85.6 84.2 84.9
Decision Tree 88.5 87.1 86.8 86.9
SVM 89.2 88.6 87.9 88.2
Random Forest 914 90.8 90.2 90.5
Proposed XGBoost | 94.8 94.1 93.6 93.8

Observation : The proposed XGBoost-based framework achieves the highest accuracy and

F1-score, demonstrating superior anomaly detection capability compared to baseline models.

Table 3: Class-Wise Performance Metrics of the XGBoost Classifier.

Class Precision | Recall | F1-Score | Support
good_left 1.00 1.00 |1.00 16,973
regular_left | 0.98 099 [0.98 19,591
bad_left 0.96 095 [0.96 6,647
Accuracy - - 0.99 43,211
Macro Avg 0.98 098 [0.98 43,211
Weighted Avg | 0.99 099 ]0.99 43,211

This table presents the detailed class-wise evaluation metrics for the proposed XGBoost-
based anomaly detection model on the Passive Vehicular Sensor (PVS) dataset. Precision,
Recall, and F1-score are reported for each class (good_left, regular_left, and bad_left), along
with their respective support values. The results demonstrate consistently high classification
performance across all classes, with particularly strong detection of severe anomalies
(bad_left). The macro-averaged and weighted-averaged scores indicate robust model
behavior under class imbalance, confirming the effectiveness of XGBoost for multi-class

PVS anomaly detection.
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Fig 5 :Confusion Matrix of XGBoost Classifier
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VI. CONCLUSION

This study presents a comprehensive framework for anomaly detection in photovoltaic
systems using XGBoost, emphasizing both accuracy and interpretability. The proposed
approach effectively captures subtle deviations in PVS operational data, enabling early
detection of potential failures. By integrating feature importance analysis, the framework not
only detects anomalies but also provides insights into which parameters contribute most
significantly to abnormal behavior, facilitating data-driven decision making for
maintenance teams. Experimental evaluation demonstrates that the model outperforms
baseline methods in terms of precision, recall, F1-score, and robustness across different PVS
datasets. This research validates the potential of interpretable machine learning models in
improving operational efficiency, reliability, and sustainability of renewable energy systems.
Moreover, the framework bridges the gap between predictive analytics and explainability, a

critical requirement for real-world adoption in industrial and utility-scale solar farms.

VIlI. FUTURE ENHANCEMENT

Future work includes integrating loT and SCADA systems for real-time monitoring,
incorporating environmental factors to improve accuracy, and adopting adaptive learning to
handle evolving system conditions. Hybrid models combining XGBoost with deep learning,
along with explainable Al techniques, can enhance detection performance and interpretability.
Extending the framework to fault classification, cloud-based deployment, and predictive

maintenance will enable scalable, efficient, and cost-effective solar farm operations.
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