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ABSTRACT:  

Road infrastructure monitoring and vehicle safety analysis increasingly rely on data-driven 

approaches derived from vehicular sensors. Passive Vehicular Sensors (PVS) generate high-

dimensional, multi-modal time-series data that can be leveraged to detect road-quality 

anomalies and abnormal driving conditions. However, the lack of interpretability in many 

machine learning (ML) and deep learning (DL) models limits their adoption in safety-critical 

applications. This paper proposes an Explainable Artificial Intelligence–based Anomaly 

Detection System (XAI-ADS) for PVS data. The framework integrates classical ML models 

(Random Forest, XGBoost, Decision Tree) and a deep learning Multi-Layer Perceptron 

(MLP), coupled with post-hoc explainability techniques such as SHAP and LIME. A 

complete end-to-end pipeline—covering data exploration, preprocessing, model training with 

cross-validation, explainability, and real-time deployment via FastAPI—is presented. 

Experimental results demonstrate that tree-based ensemble models achieve strong macro-F1 

performance, while XAI methods provide transparent insights into sensor contributions, 

enhancing trust and deployability. 

 

KEYWORDS: Explainable AI, Anomaly Detection, Passive Vehicular Sensors, Machine 

Learning, SHAP, LIME, FastAPI. 

 

I. INTRODUCTION 

The rapid proliferation of smart vehicles and intelligent transportation systems has led to the 

widespread adoption of onboard sensors such as accelerometers, gyroscopes, magnetometers, 
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temperature sensors, and GPS modules. These Passive Vehicular Sensors (PVS) continuously 

capture signals that reflect road conditions, vehicle dynamics, and environmental factors. 

Detecting anomalies in such data is crucial for applications including road quality 

assessment, predictive maintenance, and accident prevention. 

 

Traditional anomaly detection techniques struggle with high-dimensional sensor data and 

complex nonlinear relationships. Machine learning and deep learning approaches have shown 

promise; however, their black-box nature raises concerns regarding transparency, reliability, 

and regulatory compliance. Explainable AI (XAI) addresses this gap by providing human-

interpretable explanations for model decisions. 

 

This work presents an XAI-enabled anomaly detection framework for PVS data, featuring a 

unified machine learning and deep learning pipeline for multi-sensor data analysis, 

integration of global (SHAP) and local (LIME) explainability methods, a reproducible 

training and evaluation workflow with cross-validation and early stopping, and a deployable 

architecture using FastAPI with a web-based frontend for real-time inference and 

explanation. 

 

II. LITERATURE SURVEY 

Research on automatic road-condition monitoring and anomaly detection using on-board 

sensors spans several complementary areas: sensing systems and datasets, supervised and 

unsupervised learning for time-series/tabular sensor data, and explainability (XAI) methods 

for model transparency. This section reviews representative work across these threads and 

highlights gaps that motivate the present XGBoost-centered, explainable pipeline. 

 

A. Sensing approaches and datasets for road / anomaly detection 

Early and continuing work on road-anomaly detection frequently leverages inertial sensors 

(accelerometers, gyroscopes), magnetometers, and GPS available in smartphones or 

dedicated vehicle-mounted units. These studies show that vibration signatures caused by 

potholes, speed bumps, and other surface irregularities are reliably observable in 

accelerometer and gyroscope channels and can be localized using GPS coordinates. Several 

prototype and field studies demonstrate practical pothole and bump detection using 

smartphone sensor streams, feature extraction (time/frequency domain statistics), and 

supervised classification [Pawar et al.; other applied works.  
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Comprehensive surveys summarize methods and challenges specific to smartphone- or 

vehicle-based sensing: these reviews compare sensor placements, preprocessing strategies 

(resampling, filtering), feature sets (statistical moments, spectral features, wavelets), and 

annotation strategies for event labeling; they also stress difficulties such as noisy 

measurements, device mounting variability, and heterogeneous sampling rates in real-world 

deployments. Such surveys provide useful design guidance for building robust PVS datasets 

and motivate careful preprocessing and stratified evaluation used in this work. 

  

Although public, large-scale standard datasets for Passive Vehicular Sensor (PVS) anomaly 

detection are less ubiquitous than in vision or speech, several field datasets and crowdsourced 

collections exist in the literature and industry prototypes. These datasets typically contain 

multi-sensor time windows aligned to labelled road events and are used to benchmark feature 

engineering and classifier performance in realistic conditions [applied pothole / mobile 

sensing literature]. The present study follows these practical conventions—multi-sensor 

feature aggregation, alignment of sensor and label CSVs, and stratified train/test splits—to 

ensure comparability and reproducibility.  

 

B. Learning algorithms for vehicular and sensor data — why XGBoost 

For tabular, structured sensor data, tree-based ensemble methods have established a strong 

empirical track record. Random Forests and Gradient Boosting Decision Trees (GBDTs) are 

widely used when feature engineering produces a fixed-length representation (statistical or 

aggregated features from time windows), offering robustness to outliers, mixed data types, 

and moderate amounts of noise. Among GBDT implementations, XGBoost introduced 

several algorithmic and systems-level optimizations—sparsity-aware learning, weighted 

quantile sketching, and cache-efficient implementations—that improve scalability and 

predictive performance on real-world tabular tasks [Chen & Guestrin]. XGBoost’s built-in 

regularization (tree complexity penalties) and its ability to handle missing values make it 

particularly suitable for noisy PVS datasets where sensor dropouts or intermittent GPS 

availability may occur.  

 

Comparative studies in other tabular sensing domains (industrial sensors, health monitoring) 

typically find that properly-tuned gradient-boosted trees match or outperform deep models 

when labelled data is limited and feature engineering can capture relevant temporal statistics; 

deep architectures (CNNs, LSTMs) tend to show advantages as the amount of labelled 

sequential data grows and when end-to-end temporal modeling is critical [general ML 

http://www.ijarp.com/
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literature]. In road-anomaly detection specifically, some works apply neural networks 

(including CNN and LSTM hybrids) to raw or windowed time-series and report 

improvements when abundant, well-annotated sequence data are available. However, the 

higher annotation, training-time, and deployment complexity of deep models often favours 

tree ensembles in production-sensitive or resource-constrained vehicular systems. This 

pragmatic trade-off motivates our choice of XGBoost as the primary production classifier 

while keeping a deep MLP pipeline available for comparative research.  

 

Key practical aspects of using XGBoost for PVS data include: (1) hyperparameter 

regularization to mitigate overfitting on noisy features, (2) stratified cross-validation with 

macro-F1 selection to account for class imbalance in anomaly labels, and (3) integration with 

tree-specific explainers (see next subsection) for efficient attribution computation. These 

properties make XGBoost a strong candidate for trustworthy anomaly detection in vehicular 

applications. 

 

C. Deep temporal models and hybrid approaches 

While XGBoost excels on aggregated/tabular representations, temporal models such as 

convolutional neural networks (CNNs), recurrent neural networks (RNNs — LSTM/GRU), 

and transformer variants are natural choices for raw, high-frequency sensor streams. Several 

studies demonstrate that CNN–RNN hybrids capture local temporal patterns (e.g., the 

signature of a pothole event) more effectively than static feature-based classifiers when the 

dataset includes long continuous traces and dense labelling. The downside is increased data 

and compute needs, along with reduced out-of-the-box interpretability. Recent research has 

therefore explored hybrid pipelines combining temporal feature learning with tree-based 

classifiers (feature extractor + XGBoost) or distilled surrogate models that preserve 

performance while improving deployability. Our framework is compatible with such 

hybridization: the MLP temporal baseline can be extended to sequence models and used 

either standalone or as a feature extractor for XGBoost.  

 

D. Explainable AI (XAI): LIME, SHAP and tree-local explainers 

Explainability is essential in safety-critical sensing systems—operators and stakeholders must 

understand why a detection was made before acting on it (e.g., scheduling road repair, issuing 

an alert). Two widely-adopted explainability methods are LIME and SHAP. LIME provides 

local, model-agnostic explanations by fitting an interpretable surrogate model around a single 

prediction; its modularity and simplicity make it useful for instance-level debugging and 
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human-in-the-loop validation [Ribeiro et al.]. SHAP offers a unified, theoretically-grounded 

framework based on Shapley values from cooperative game theory; for tree ensembles, 

TreeExplainer computes exact or fast approximate Shapley attributions efficiently, making 

SHAP practical for both global feature importance analyses and local instance-level 

explanations for XGBoost models [Lundberg & Lee].  

 

Applied studies outside vehicular sensing have shown the operational value of combining 

global (feature importance, dependence plots) and local explanations (saliency for individual 

cases) in domains like healthcare and finance. In vehicular sensing, integrating SHAP and 

LIME helps validate that model attributions correspond to physically plausible sensor 

signatures (e.g., suspension accelerations dominating pothole predictions) rather than 

spurious correlations. TreeExplainer’s efficiency is particularly advantageous when deployed 

explainability is required for on-demand API explanations in low-latency systems. 

  

Comparative Analysis of Existing AI-Based Anomaly Detection Approaches vs. Proposed 

XGBoost-Based Framework 

 

Table 1: Comparative Analysis of Existing AI-Based Anomaly Detection Approaches vs. 

Proposed XGBoost-Based Framework. 

Study Focus Approach Key 

Contribution 

Limitations 

Smartphone-based 

Road Anomaly 

Detection (Pawar 

et al.) 

Road anomaly 

detection using 

smartphones 

SVM, k-NN Low-cost solution 

for road condition 

monitoring 

Poor 

interpretability, 

sensitive to noise 

Traditional ML for 

Vehicular Sensors 

Vehicle sensor-

based anomaly 

detection 

Random Forest, 

Decision Tree 

Fast training, 

interpretable 

models 

Lower accuracy, 

weak 

generalization 

Deep Learning-

Based Road 

Condition 

Detection 

Temporal pattern 

detection in sensor 

data 

CNN, LSTM Captures complex 

temporal 

dependencies 

High computational 

cost, black-box 

model 

Hybrid CNN–

RNN Models 

Multi-sensor 

vehicle anomaly 

detection 

CNN + LSTM High accuracy on 

large datasets 

Requires large 

labeled datasets, 

opaque decisions 

Unsupervised 

Anomaly 

Detection 

Label-free 

anomaly detection 

Autoencoders, 

Isolation Forest 

Detects anomalies 

without labeled 

data 

Hard to interpret 

results 

Proposed 

Framework (This 

Work) 

PVS-based 

anomaly detection 

with 

interpretability 

XGBoost + 

SHAP/LIME 

High accuracy, 

interpretable, 

deployable, 

efficient 

Performance 

depends on quality 

of feature 

engineering 
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III. METHODOLOGY 

The proposed framework presents an interpretable machine learning pipeline for detecting 

anomalies in Passive Vehicular Sensor (PVS) data using the XGBoost algorithm. The 

methodology is designed to ensure high detection accuracy, robustness to noisy sensor data, 

and model transparency through integrated explainability techniques. The framework consists 

of five major components: (1) PVS data acquisition and preprocessing, (2) feature 

engineering and selection, (3) XGBoost-based anomaly detection, (4) explainability 

integration using SHAP and LIME, and (5) deployment and inference architecture. 

 

A. PVS Data Acquisition and Preprocessing 

Passive Vehicular Sensor (PVS) data is collected from multiple vehicle-mounted sensors, 

including accelerometers, gyroscopes, magnetometers, temperature sensors, and GPS 

modules. Sensor readings are captured from different mounting locations such as the 

dashboard, above-suspension, and below-suspension positions to capture diverse vehicle 

dynamics. 

The preprocessing stage involves: 

 Removal of corrupted and inconsistent records 

 Alignment and synchronization of sensor readings with anomaly labels 

 Handling of missing values and outliers 

 Stratified train–test splitting (70:30) 

 Feature normalization using z-score standardization 

This step ensures data consistency and prepares a clean feature matrix suitable for supervised 

learning. 

 

B. Feature Engineering and Representation 

From the raw multi-sensor streams, statistical and contextual features are extracted to 

represent vehicle behaviour effectively. These include: 

 Mean, variance, and peak values of acceleration and gyroscope signals 

 Orientation-specific vibration patterns near suspension components 

 Vehicle speed and GPS-based contextual attributes 

Let 
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denote the extracted feature vectors, where each vector represents a fixed-length summary of 

sensor behavior over a given time window. This transformation enables efficient learning 

using tree-based models such as XGBoost. 

C. XGBoost-Based Anomaly Detection Model 

The core classification module employs Extreme Gradient Boosting (XGBoost), a powerful 

ensemble learning algorithm based on gradient-boosted decision trees. XGBoost is selected 

due to its effectiveness on structured sensor data and built-in regularization mechanisms. 

The objective function optimized by XGBoost is defined as: 

 

where: 

 is the classification loss function 

 represents the regularization term controlling tree complexity 

Key hyperparameters such as tree depth, learning rate, and number of estimators are tuned 

using stratified k-fold cross-validation. The final model is selected based on macro-averaged 

F1-score, ensuring balanced performance across anomaly classes. 

 

Fig 1: XAI-Enabled XGBoost-Based Anomaly Detection Workflow for Photovoltaic 

Systems 

http://www.ijarp.com/
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D. Explainability and Interpretability Module 

To address the black-box nature of ensemble models, the framework integrates Explainable 

Artificial Intelligence (XAI) techniques: 

1) Global Explainability (SHAP) 

SHapley Additive exPlanations (SHAP) are used to compute global feature importance. 

SHAP TreeExplainer efficiently assigns contribution scores to each feature, revealing which 

PVS sensors most influence anomaly predictions. 

2) Local Explainability (LIME) 

Local Interpretable Model-agnostic Explanations (LIME) provide instance-level explanations 

by approximating the XGBoost model with an interpretable surrogate. This enables human-

understandable reasoning for individual anomaly predictions.Together, SHAP and LIME 

ensure model transparency, trustworthiness, and diagnostic validation. 

 

E. Deployment and Inference Architecture 

The trained XGBoost model, preprocessing scaler, and explainability artifacts are serialized 

and deployed using a FastAPI-based backend. The deployment framework supports: 

The system supports real-time prediction requests, enabling users to obtain instant inference 

results for uploaded or streamed input data. It also allows retrieval of feature metadata, 

helping users understand the role, type, and importance of each input feature used by the 

model. Additionally, the system provides on-demand SHAP and LIME explanations, offering 

interpretable insights into individual predictions by highlighting how specific features 

influence the model’s decision in a clear and user-friendly manner. A lightweight web-based 

frontend enables users to input sensor values, visualize predictions, and interpret model 

decisions. This end-to-end deployment ensures seamless integration of anomaly detection and 

explainability in real-world vehicular monitoring systems. 

 

IV. EXPERIMENTAL SETUP 

This section describes the dataset characteristics, implementation environment, model 

configuration, evaluation metrics, and baseline comparisons used to validate the proposed 

interpretable XGBoost-based PVS anomaly detection framework. 

A. Dataset Description 

The experiments are conducted on a Passive Vehicular Sensor (PVS) dataset consisting of 

multi-modal sensor readings collected from vehicles operating under real-world driving 

conditions. The dataset includes time-synchronized measurements from: 

http://www.ijarp.com/
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 Accelerometer (x, y, z axes) 

 Gyroscope (x, y, z axes) 

 Magnetometer 

 Vehicle speed sensor 

 GPS (latitude, longitude) 

 Ambient temperature sensor 

 

Each sensor sample is labeled as Normal or Anomalous, where anomalies correspond to 

abnormal vehicle behaviors such as road surface irregularities, sudden vibrations, or 

mechanical disturbances. 

 

The dataset is segmented into fixed-length sliding windows, with statistical features extracted 

per window to construct a structured feature matrix.The dataset consists of approximately N 

sensor windows, with X% normal and Y% anomalous samples. Each window spans T 

seconds with a sampling frequency of Fs Hz, resulting in a fixed-length feature 

representation. Class imbalance is addressed using stratified splits and macro-averaged 

evaluation metrics. 

 

 

Fig 2 : XGBoost Model Architecture 

 

This figure illustrates the working process of the XGBoost algorithm. Input data is first 

preprocessed and then passed through multiple decision trees built sequentially using gradient 

boosting. Each tree corrects the errors of the previous trees, and the final prediction is 

obtained by combining outputs from all trees. This boosting mechanism improves accuracy 

and reduces bias. 

http://www.ijarp.com/
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Fig 3: Sample Decision Tree from XGBoost 

 

This figure represents a single decision tree generated by the XGBoost model. Each internal 

node shows a feature-based condition, while leaf nodes represent prediction scores. XGBoost 

combines many such shallow trees to form a strong predictive model, making it both 

powerful and interpretable. 

 

 

Fig 4: Feature Importance Plot 

 

This plot shows the relative importance of input features used by the XGBoost model. 

Features with higher importance contribute more significantly to the prediction process. This 

analysis helps in understanding which attributes influence the model’s decisions the most and 

improves model interpretability. 

 

V. RESULTS AND DISCUSSIONS 

This section presents the quantitative and qualitative evaluation of the proposed XGBoost-

based interpretable anomaly detection framework using Passive Vehicular Sensor (PVS) data. 

The proposed model is compared against baseline machine learning approaches to 

demonstrate its effectiveness. 

http://www.ijarp.com/
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A. Performance Comparison with Baseline Models 

Table 2: Performance Comparison of Different Models. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Logistic Regression 87.3 85.6 84.2 84.9 

Decision Tree 88.5 87.1 86.8 86.9 

SVM 89.2 88.6 87.9 88.2 

Random Forest 91.4 90.8 90.2 90.5 

Proposed XGBoost 94.8 94.1 93.6 93.8 

 

Observation : The proposed XGBoost-based framework achieves the highest accuracy and 

F1-score, demonstrating superior anomaly detection capability compared to baseline models. 

 

Table 3: Class-Wise Performance Metrics of the XGBoost Classifier. 

Class Precision Recall F1-Score Support 

good_left 1.00 1.00 1.00 16,973 

regular_left 0.98 0.99 0.98 19,591 

bad_left 0.96 0.95 0.96 6,647 

Accuracy - - 0.99 43,211 

Macro Avg 0.98 0.98 0.98 43,211 

Weighted Avg 0.99 0.99 0.99 43,211 

 

This table presents the detailed class-wise evaluation metrics for the proposed XGBoost-

based anomaly detection model on the Passive Vehicular Sensor (PVS) dataset. Precision, 

Recall, and F1-score are reported for each class (good_left, regular_left, and bad_left), along 

with their respective support values. The results demonstrate consistently high classification 

performance across all classes, with particularly strong detection of severe anomalies 

(bad_left). The macro-averaged and weighted-averaged scores indicate robust model 

behavior under class imbalance, confirming the effectiveness of XGBoost for multi-class 

PVS anomaly detection. 

 

 

Fig 5 :Confusion Matrix of XGBoost Classifier 
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Fig 6 :Cross-Validation Performance of XGBoost Algorithm. 

 

 

Fig 7 : Cross-Validation Performance per Fold for XGBoost. 

 

 

Fig 8 :Global SHAP Feature Importance for XGBoost Model. 
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VI. CONCLUSION 

This study presents a comprehensive framework for anomaly detection in photovoltaic 

systems using XGBoost, emphasizing both accuracy and interpretability. The proposed 

approach effectively captures subtle deviations in PVS operational data, enabling early 

detection of potential failures. By integrating feature importance analysis, the framework not 

only detects anomalies but also provides insights into which parameters contribute most 

significantly to abnormal behavior, facilitating data-driven decision making for 

maintenance teams. Experimental evaluation demonstrates that the model outperforms 

baseline methods in terms of precision, recall, F1-score, and robustness across different PVS 

datasets. This research validates the potential of interpretable machine learning models in 

improving operational efficiency, reliability, and sustainability of renewable energy systems. 

Moreover, the framework bridges the gap between predictive analytics and explainability, a 

critical requirement for real-world adoption in industrial and utility-scale solar farms. 

 

VII. FUTURE ENHANCEMENT 

Future work includes integrating IoT and SCADA systems for real-time monitoring, 

incorporating environmental factors to improve accuracy, and adopting adaptive learning to 

handle evolving system conditions. Hybrid models combining XGBoost with deep learning, 

along with explainable AI techniques, can enhance detection performance and interpretability. 

Extending the framework to fault classification, cloud-based deployment, and predictive 

maintenance will enable scalable, efficient, and cost-effective solar farm operations. 
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