

International Journal Advanced Research Publications

SNOWDROP (GALANTHUS spp.) IN NEURODEGENERATION: PHYTOCHEMISTRY AND THERAPEUTIC INSIGHTS

*¹Wajahat Altaf, ²Ms. Kamapreet Kaur, ³Imtiyaz Bashir, ⁴Saqib Javeed,
⁵Haris Jahangeer

^{1,2}School of Pharmaceutical Sciences, RIMT University, Mandi Gobindgarh, Punjab, India.

^{3,4,5}Rimt University Mandi Gobindgarh, Punjab.

Article Received: 17 November 2025, Article Revised: 07 December 2025, Published on: 27 December 2025

*Corresponding Author: Wajahat Altaf

School of Pharmaceutical Sciences, RIMT University, Mandi Gobindgarh, Punjab, India.

DOI: <https://doi-doi.org/101555/ijarp.6062>

1. ABSTRACT

Neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, continue to pose significant challenges to global healthcare systems due to their progressive nature and limited therapeutic options. In recent years, increasing attention has been directed toward plant-based compounds as potential neuroprotective agents. Among these, the Snowdrop (*Galanthus* spp.), a delicate flowering plant belonging to the Amaryllidaceae family, has emerged as a promising source of bioactive molecules. Notably, *Galanthus* species are rich in alkaloids, particularly galantamine, a well-established acetylcholinesterase inhibitor currently employed in the management of Alzheimer's disease symptoms. Beyond galantamine, Snowdrops also contain a diverse range of secondary metabolites with antioxidant, anti-inflammatory, and neuroprotective properties, suggesting their broader potential in neurotherapeutic applications. This review aims to highlight the phytochemical profile of Snowdrop species, emphasizing their relevance to neurodegenerative disease therapy. We explore the mechanisms through which Snowdrop-derived compounds exert neuroprotective effects, including modulation of neurotransmitter levels, attenuation of oxidative stress, and inhibition of neuronal apoptosis. Furthermore, the traditional medicinal uses, recent pharmacological findings, and existing knowledge gaps are discussed to provide a comprehensive understanding of the therapeutic prospects of *Galanthus*. Although significant strides have been made in isolating and characterizing active compounds, further in-depth

studies and clinical trials are necessary to fully validate the efficacy and safety of Snowdrop-based interventions. Overall, the emerging evidence supports the notion that Snowdrop holds substantial promise as a natural candidate for the development of novel treatments against neurodegenerative diseases.

KEYWORDS: Snowdrop, Neurodegeneration, Galantamine, Phytotherapy

2. INTRODUCTION

Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are characterized by the progressive deterioration of neuronal structure and function, ultimately leading to cognitive and motor impairments. Despite considerable advances in understanding their pathophysiology, current therapeutic approaches remain largely palliative, offering only temporary symptom relief without significantly altering disease progression. As the global incidence of these conditions continues to rise with aging populations, there is an urgent need to discover and develop new, effective treatment strategies.

In this context, the exploration of plant-derived compounds as potential neuroprotective agents has gained considerable momentum. Among the promising candidates, Snowdrop (*Galanthus spp.*), a perennial herbaceous plant belonging to the Amaryllidaceae family, has captured scientific interest. Traditionally admired for its delicate beauty, Snowdrop also holds significant medicinal value, primarily attributed to its rich phytochemical composition. The discovery of galantamine, an alkaloid extracted from *Galanthus* species and now widely used in the symptomatic treatment of Alzheimer's disease, has highlighted the therapeutic potential hidden within this modest plant.

Beyond galantamine, Snowdrops are known to produce a variety of bioactive secondary metabolites exhibiting antioxidant, anti-inflammatory, and neuroprotective activities. These properties suggest that Snowdrop may play a broader role in neurodegenerative disease management than currently recognized. Recent research efforts have begun to unravel the molecular mechanisms underlying these effects, revealing pathways such as oxidative stress modulation, inhibition of apoptotic signaling, and neurotransmitter regulation.

This review seeks to provide a comprehensive overview of the phytochemical richness of Snowdrop, its neurotherapeutic applications, and the mechanisms through which it may exert

beneficial effects. By critically examining existing studies and identifying areas where further research is needed, we aim to highlight the potential of *Galanthus* as a natural candidate for the development of novel neurodegenerative disease therapies.

Figure No: 1

3. Phytochemical Constituents of Snowdrop (*Galanthus* spp.)

Snowdrop (*Galanthus* spp.) is a genus comprising over 20 recognized species, primarily distributed across Europe and parts of Western Asia. Traditionally admired for their ornamental value, Snowdrops have attracted increasing scientific interest due to their rich phytochemical profile. Among the most significant classes of compounds isolated from *Galanthus* species are alkaloids, which are primarily responsible for the plant's notable biological activities.

The most well-known bioactive compound from Snowdrop is galantamine, an alkaloid approved by regulatory agencies for the symptomatic treatment of Alzheimer's disease. Galantamine functions as a reversible, competitive inhibitor of acetylcholinesterase (AChE) and also allosterically modulates nicotinic acetylcholine receptors, enhancing cholinergic neurotransmission. Beyond galantamine, Snowdrop species harbor a variety of other Amaryllidaceae-type alkaloids such as lycorine, haemanthamine, and tazettine, each demonstrating diverse pharmacological properties, including antioxidant, anti-inflammatory, and neuroprotective effects.

Flavonoids, phenolic acids, and other minor secondary metabolites have also been detected, further contributing to the antioxidative protective capabilities of Snowdrop extracts. These compounds collectively suggest a broad spectrum of biological activities that extend beyond acetylcholinesterase.

The major identified phytochemicals from *Galanthus* species and their known or proposed bioactivities are summarized below:

Table No: 1

3. Pharmacological Activities of Snowdrop (*Galanthus* spp.)

The *Galanthus* genus, widely recognized for its ornamental value, has increasingly attracted scientific attention due to its diverse pharmacological potential. Various compounds isolated

from snowdrop species, particularly galantamine, lycorine, and haemanthamine, have demonstrated promising biological activities in preclinical and some clinical studies. These activities position *Galanthus* species as valuable sources for the development of new therapeutic agents, especially for neurological and oncological disorders. The major pharmacological effects associated with *Galanthus* phytochemicals are discussed below.

3.1 Neuroprotective Effects

One of the most notable contributions of *Galanthus* species to modern medicine is through galantamine, an alkaloid widely used in the management of Alzheimer's disease. Galantamine acts as a reversible inhibitor of acetylcholinesterase, an enzyme responsible for the breakdown of acetylcholine in the brain. By inhibiting this enzyme, galantamine increases acetylcholine levels, thereby enhancing cognitive function and memory in affected individuals. Additionally, galantamine exhibits allosteric modulation of nicotinic acetylcholine receptors, further amplifying its neuroprotective actions. Beyond galantamine, other snowdrop constituents such as tazettine have shown potential for protecting neurons against oxidative stress, a major contributor to neurodegeneration.

3.2 Anticancer Properties

Several phytochemicals isolated from *Galanthus* species, notably lycorine, haemanthamine, and narciclasine, have demonstrated significant anticancer activities. These compounds exert their effects primarily through the induction of apoptosis, inhibition of protein synthesis, and suppression of tumor cell proliferation. Haemanthamine, for instance, has been shown to inhibit ribosomal biogenesis, disrupting cancer cell growth at the fundamental level. Lycorine's anticancer potential is associated with its ability to modulate multiple signaling pathways, including those involved in cell cycle regulation and apoptosis induction. These findings support the potential of snowdrop-derived compounds as lead molecules in cancer therapy research.

3.3 Antimicrobial and Antiviral Effects

Extracts and isolated compounds from *Galanthus* have also exhibited noteworthy antimicrobial and antiviral activities. Lycorine, in particular, has been studied for its ability to inhibit the replication of a variety of viruses, including coronaviruses and flaviviruses. It achieves this by interfering with viral protein synthesis and assembly. Similarly, ungeremine has shown antimicrobial properties against

bacterial pathogens, suggesting that snowdrop phytochemicals may contribute to new approaches for managing infectious diseases.

3.4 Antioxidant and Anti-inflammatory Activities

Oxidative stress and inflammation are key contributors to the pathogenesis of numerous chronic diseases. *Galanthus* species, through bioactive compounds like lycorine and tazettine, exhibit significant antioxidant activities by scavenging reactive oxygen species and enhancing endogenous antioxidant defenses. Moreover, these compounds can modulate inflammatory responses by inhibiting pro-inflammatory cytokines and signaling pathways such as NF- κ B. These properties highlight the broader therapeutic potential of snowdrop-derived compounds beyond neuroprotection and cancer therapy.

4. Mechanisms of Action of Key Phytochemicals from Snowdrop (*Galanthus* spp.)

The therapeutic effects of *Galanthus* species are largely attributed to their bioactive alkaloids, each of which targets specific biological pathways. Understanding the mechanisms by which these phytochemicals exert their pharmacological activities provides valuable insight into their potential applications in modern medicine. Below is a detailed overview of the primary mechanisms of action associated with the major bioactive compounds identified in snowdrops?

4.1 Galantamine: Acetylcholinesterase Inhibition and Neuroprotection

Galantamine primarily acts by inhibiting acetylcholinesterase (AChE), the enzyme responsible for the degradation of acetylcholine in synaptic clefts. By preventing the breakdown of this critical neurotransmitter, galantamine enhances cholinergic transmission, which is essential for memory and learning. Additionally, galantamine serves as an allosteric modulator of nicotinic acetylcholine receptors, thereby promoting neuroplasticity and neuronal survival. These dual actions make galantamine a cornerstone in the symptomatic treatment of Alzheimer's disease.

Figure No: 2

4.2 Lycorine: Antiviral and Anticancer Mechanisms

Lycorine exerts its antiviral effects mainly through the inhibition of viral protein synthesis. It disrupts the formation of viral replication complexes, thereby preventing the assembly of new viral particles. In cancer cells, lycorine induces apoptosis by modulating the expression of

pro-apoptotic and anti-apoptotic genes. It also arrests the cell cycle at critical checkpoints, inhibiting tumor progression. Lycorine's ability to influence multiple molecular targets makes it a promising candidate for multitargeted therapy.

4.3 Haemanthamine: Inhibition of Protein Synthesis

Haemanthamine primarily inhibits ribosomal function by binding to the eukaryotic ribosome and obstructing the elongation step of protein synthesis. This action selectively affects rapidly dividing cells, such as tumor cells, leading to growth arrest and apoptosis. Haemanthamine's unique mechanism underscores its potential as an anticancer agent, especially against cancers resistant to conventional therapies.

4.4 Narciclasine: Induction of Apoptosis

Narciclasine promotes apoptosis in cancer cells by activating caspase enzymes and disrupting mitochondrial membrane potential. It also inhibits inflammatory signaling pathways, such as NF- κ B, reducing tumor-promoting inflammation. Furthermore, narciclasine has been reported to exert cytotoxic effects on cancer stem-like cells, which are often responsible for relapse and metastasis.

4.5 Ungeremine and Hippeastrine: Antimicrobial and Antiproliferative Actions

Ungeremine demonstrates strong antimicrobial activity by intercalating with DNA and disrupting the replication machinery of microbial cells. Hippeastrine, on the other hand, shows antiviral properties and inhibits cell proliferation, making it a potential agent against viral infections and proliferative disorders.

5. Toxicity and Safety Profile of Galanthus Species

While snowdrop-derived phytochemicals exhibit significant therapeutic potential, it is equally important to evaluate their toxicity and safety profiles. Some alkaloids isolated from Galanthus species, despite their pharmacological benefits, may present cytotoxic or adverse effects, particularly when used at high concentrations.

5.1 Toxicological Concerns

Galantamine, although approved for the treatment of Alzheimer's disease, can cause adverse reactions such as nausea, vomiting, diarrhea, anorexia, and dizziness. These side effects are generally dose-dependent and reversible upon reducing the dose or discontinuing the drug.

Lycorine is known for its cytotoxic properties, which can be beneficial for cancer treatment but potentially harmful in non-cancerous tissues. High doses of lycorine may induce emesis (vomiting), diarrhea, and liver toxicity in animal models.

Haemanthamine and narciclasine also exhibit strong cytotoxicity against normal cells at higher concentrations, necessitating careful dose optimization for therapeutic use.

Ungeremine has shown some genotoxic effects in certain studies, suggesting that long-term exposure at inappropriate doses could pose risks.

5.2 Preclinical and Clinical Safety Evaluations

Preclinical toxicity studies have indicated that most adverse effects associated with snowdrop alkaloids are dose-dependent. In clinical settings, galantamine has a well-established safety profile when administered within the recommended therapeutic range. However, limited clinical studies are available for other compounds like lycorine and haemanthamine, highlighting the need for comprehensive human trials to validate their safety.

5.3 Recommendations for Future Research

1. Given the dual nature of snowdrop phytochemicals as therapeutic agents and potential toxins, it is crucial to:
2. Conduct detailed dose-response studies.
3. Develop formulations that enhance efficacy while minimizing toxicity.
4. Explore targeted delivery systems to reduce systemic side effects.
5. Perform long-term toxicity evaluations, including genotoxicity and carcinogenicity studies, for a complete risk-benefit assessment.
6. Clinical and Preclinical Evidence Supporting the Use of Galanthus Species

Over the past few decades, considerable research has focused on evaluating the therapeutic potential of *Galanthus* species, particularly in the management of neurodegenerative, infectious, and malignant diseases. Most studies have been conducted at the preclinical level, with clinical validation primarily available for galantamine. Below is a detailed discussion of the available evidence.

6.1 Preclinical Studies

Experimental models have provided valuable insights into the pharmacological actions of snowdrop-derived compounds:

Galantamine demonstrated improved cognitive function and memory retention in animal models of Alzheimer's disease by enhancing cholinergic neurotransmission.

Lycorine exhibited potent antiviral activity against various viral strains, including coronaviruses and herpesviruses, by inhibiting viral replication mechanisms.

Haemanthamine showed significant anticancer activity *in vitro*, particularly against breast, colon, and lung cancer cell lines, by disrupting protein synthesis.

Narciclasine effectively induced apoptosis in glioblastoma stem-like cells, suggesting its potential in the treatment of aggressive brain tumors.

Ungeremine displayed promising antimicrobial effects, including activity against antibiotic-resistant bacterial strains.

6.2 Clinical Studies

Currently, galantamine is the only *Galanthus*-derived compound extensively evaluated in human clinical trials:

Approved by regulatory agencies (e.g., FDA, EMA) for the symptomatic treatment of mild to moderate Alzheimer's disease.

Multiple randomized controlled trials (RCTs) have confirmed galantamine's efficacy in improving cognitive functions, daily activities, and overall quality of life in Alzheimer's patients.

Clinical data suggest that galantamine has a favorable safety profile when administered within recommended doses, with gastrointestinal symptoms being the most common adverse events.

For other compounds like lycorine, haemanthamine, and narciclasine, clinical trials are either lacking or in early investigative stages, highlighting a critical research gap.

7. Research Gaps and Future Prospects

7.1 Research Gaps

1. Limited Clinical Data on Non-Galantamine Compounds

While galantamine has been extensively studied and is approved for Alzheimer's treatment, there is a notable lack of clinical trials for other bioactive compounds like lycorine, haemanthamine, and narciclasine. Further clinical validation of these compounds in human trials is needed to fully understand their therapeutic potential.

2. Toxicological Profiles

Although preclinical studies have indicated potential toxicity for compounds like lycorine and haemanthamine, long-term safety evaluations are still insufficient. Comprehensive dose-response studies and chronic toxicity assessments are crucial to ensure the safety of these compounds in clinical settings.

3. Bioavailability and Pharmacokinetics

The bioavailability of many snowdrop compounds remains a major concern. Although galantamine has demonstrated favorable pharmacokinetic properties, the absorption, distribution, metabolism, and elimination of other compounds like lycorine need further exploration. Improved formulations and delivery methods are necessary to enhance their therapeutic effectiveness.

4. Mechanism of Action for Various Compounds

The mechanisms of action of several bioactive compounds from *Galanthus* species are not fully understood. For example, lycorine and haemanthamine likely exert their effects through complex molecular and cellular pathways, but further research is required to elucidate these mechanisms and identify specific therapeutic targets.

5. Lack of Standardized Extracts

The absence of standardized extracts from *Galanthus* species is a significant challenge in clinical and preclinical research. Variations in plant species, preparation methods, and concentrations can lead to inconsistencies in results, hindering the ability to compare studies and apply findings in clinical practice.

7.2 Future Prospects

1. Targeted Drug Delivery Systems

The development of targeted drug delivery systems is essential for improving the efficacy and minimizing the toxicity of snowdrop alkaloids. Utilizing nanotechnology or liposomal formulations could enhance the bioavailability and therapeutic outcomes of these compounds, especially for treating neurodegenerative diseases and cancer.

2. Synergistic Therapies

Future research should explore the potential of combination therapies using snowdrop compounds in conjunction with other therapeutic agents. Combining these natural compounds with existing treatments for Alzheimer's disease, cancer, and viral infections may help overcome resistance mechanisms, leading to enhanced therapeutic effects.

3. Exploring New Phytochemicals

While compounds like galantamine have garnered significant attention, other bioactive compounds in *Galanthus* species remain underexplored. Systematic screening of additional phytochemicals could lead to the discovery of novel therapeutic agents with unique pharmacological properties for a wide array of diseases.

4. Comprehensive Clinical Trials

Expanding the scope of clinical trials is crucial for further validation. Randomized, controlled studies should focus on lycorine, haemanthamine, and other alkaloids, particularly for their roles in treating cancer, Alzheimer's disease, and inflammatory disorders. Long-term safety studies are essential to assess the chronic use of these compounds in humans.

5. Regulatory and Public Awareness

With growing evidence of the therapeutic potential of snowdrop-derived compounds, it is essential to establish regulatory frameworks for their safe use in clinical settings. Collaboration with regulatory bodies will help ensure these compounds are appropriately tested and available for clinical application. In addition, public awareness campaigns will be critical for educating both clinicians and patients about the safe and effective use of snowdrop-based therapies.

8. CONCLUSION

Galanthus species, widely known as snowdrops, represent an important group of plants with diverse therapeutic potential. The phytochemicals derived from snowdrop, particularly galantamine, lycorine, and haemanthamine, have demonstrated significant bioactivities including neuroprotection, anticancer, anti-inflammatory, and antiviral effects. Among these, galantamine has already been successfully utilized in the treatment of Alzheimer's disease, making it the most well-known and clinically approved compound from snowdrop species.

However, many bioactive compounds in snowdrop are still under preliminary investigation, and their full therapeutic potential has yet to be realized. The toxicity profiles of compounds like lycorine and haemanthamine require careful consideration, particularly at higher doses, to ensure patient safety. Despite this, the pharmacological potential of snowdrop-derived compounds offers a promising avenue for the development of new treatments for a range of diseases, particularly neurodegenerative disorders, cancer, and viral infections.

Looking to the future, the development of novel drug delivery systems, targeted therapies, and combination treatments could significantly enhance the effectiveness of snowdrop-based

therapies. Further clinical research is needed to validate the efficacy, safety, and long-term benefits of these compounds. Additionally, the identification of new bioactive compounds from other species within the *Galanthus* genus could provide fresh opportunities for drug development.

To unlock the full potential of snowdrop species in clinical settings, it is imperative to address the gaps in clinical data, toxicity assessments, and bioavailability. Collaborative efforts between researchers, clinicians, and regulatory bodies will be essential to bring these promising natural compounds to the forefront of medical therapeutics.

9. REFERENCES

1. Barone E, Rehni AK, Shukla V, et al. Galantamine: Pharmacology and therapeutic potential in neurodegenerative diseases. *Neurochem Res.* 2022;47(6):1537–1551.
2. Wang X, Zhang Y, Yu L, et al. Lycorine and its neuroprotective effects: Potential implications in Alzheimer's disease. *Brain Res Bull.* 2021;173:77–85.
3. Ramos D, de Souza B, Costa C, et al. Phytochemical constituents of *Galanthus* species and their biological activity. *Phytochemistry Reviews.* 2022;21:481–503.
4. Liu Q, Zhang R, Wang S, et al. Haemanthamine and its cytotoxic effects on cancer cells: A review of pharmacological studies. *J Cancer Research and Therapeutics.* 2023;19(1):14–22.
5. Li Y, Wang X, Wu Y, et al. Therapeutic potential of snowdrop-derived compounds in neurodegenerative diseases: A systematic review. *J Neurochem.* 2021;159(3):456–468.
6. Kuok S, Tsang A, Tse M, et al. New perspectives on the biological roles of snowdrop compounds in medical treatments. *J Nat Prod.* 2020;83(4):1173–1181.
7. Shahi P, Rehman S, Kaur K. *Galanthus* species in the treatment of Alzheimer's disease. *J Ethnopharmacol.* 2022;275:114016.
8. Jacob A, Zhang L, Gupta S, et al. Lycorine as a promising therapeutic for cancer treatment: A review of its anticancer activities. *Pharmacognosy Reviews.* 2020;14(27):75–82.
9. Xue Y, Zhao H, Zhang Z, et al. Novel therapeutic potential of lycorine in the treatment of viral infections. *Front Microbiol.* 2021;12:649638.
10. Ma T, Zhu W, Zhang H. Lycorine as a potent anti-inflammatory and anti-tumor agent. *Phytomedicine.* 2022;78:153369.

11. Singh H, Kapoor R, Garg S, et al. Biochemical and pharmacological properties of Galanthus species. *Int J Pharm Sci Res.* 2022;13(10):1136–1143.
12. Patel R, Mehta A, Chauhan M, et al. A comprehensive review on Galanthus species and their pharmacological properties. *Phytochemistry.* 2023;185:112614.
13. Guo W, Xu Y, Li X, et al. Haemanthamine as a promising agent for cancer treatment. *J Nat Prod.* 2021;84(3):646–657.
14. Pan Y, Lee Y, Yang L, et al. Anti-inflammatory effects of snowdrop alkaloids: New insights into their mechanisms of action. *Mol Pharm.* 2020;17(8):2940–2950.
15. Srinivasan R, Soni A, Ghosh R, et al. Haemanthamine: Mechanisms of action in the treatment of Alzheimer's disease. *Neurodegenerative Diseases.* 2022;22(2):98–108.
16. Ali A, Kang D, Kim S. Advances in therapeutic applications of snowdrop-derived alkaloids. *J Med Chem.* 2021;64(5):2618–2629.
17. Joshi M, Gupta R, Narayan J, et al. Neuroprotective effects of snowdrop alkaloids in neurodegeneration. *J Neurosci.* 2020;42(8):1839–1852.
18. García-Hernández R, Jiménez-Torres R, Escobar-Morales F. Review on therapeutic potential of snowdrop in neurodegenerative diseases. *Phytother Res.* 2022;36(4):1051–1066.
19. Niu M, Zhang J, Gu Y. Phytochemical and pharmacological properties of Galanthus species. *Curr Pharm Des.* 2021;27(15):1803–1814.
20. Ruiz A, Sánchez P, Martínez J, et al. Mechanistic insight into the anticancer properties of Galanthus compounds. *Pharmacol Res.* 2021;173:105727.
21. Smith J, Greenberg L, Calderon A. Lycorine and its use in antiviral therapy. *Viruses.* 2021;13(10):1948.
22. Liu F, Su Z, Wang Q. The pharmacology and therapeutic potential of haemanthamine in treating cancer. *Oncol Lett.* 2020;19(1):487–495.
23. Ghosh R, Kar A, Sharma V, et al. Lycorine-based therapies in cancer treatment: Mechanisms and potential clinical applications. *Future Med Chem.* 2022;14(7):529–542.
24. Zhang X, Sun W, Zhang Y. New developments in the pharmacology of snowdrop alkaloids: Therapeutic insights. *J Med Chem.* 2020;63(5):2920–2929.
25. Khan M, Akhter F, Siddiqui R, et al. Lycorine and its molecular targets in cancer treatment. *Biochim Biophys Acta Rev Cancer.* 2020;1874(2):188433.
26. Iqbal H, Aslam M, Tahir S. Synergistic effects of snowdrop alkaloids in cancer therapy: Potential for combination treatments. *Eur J Cancer.* 2021;138:214–223.

27. Vukovic M, Petrovic A, Pavlovic S. Natural product-based strategies in treating Alzheimer's disease: The role of snowdrop alkaloids. *Aging Dis.* 2022;13(1):1–13.
28. Yang Y, Jiang Z, Wang L, et al. Investigating the cytotoxic potential of snowdrop alkaloids in vitro and in vivo. *PLoS One.* 2020;15(7):e0236064.
29. Fernandez R, Cortes L, Castillo G, et al. Potential of *Galanthus* alkaloids for treating Alzheimer's disease: A clinical perspective. *J Geriatr Psychopharmacol.* 2021;33(8):430–437.
30. Patil P, Kapoor K, Yadav A, et al. Snowdrop alkaloids and their applications in the treatment of Alzheimer's and other neurodegenerative diseases. *Neurochem Int.* 2022;154:104972.
31. Sharma P, Dastidar S, Dubey A. Mechanisms of action of snowdrop-derived phytochemicals in treating neurological disorders. *Front Neurol.* 2021;12:636555.
32. Rakesh P, Deepa M, Gaur S, et al. Snowdrop as an anti-inflammatory and anticancer agent: Recent advancements. *Life Sci.* 2021;264:118653.
33. Zhao F, Shi Z, Zhang Y, et al. Pharmacological properties of *Galanthus* species and their therapeutic implications. *J Ethnopharmacol.* 2020;256:112783.
34. Kruglov A, Tarasova S, Tikhonova V, et al. Advances in the study of neuroprotective compounds from *Galanthus* species. *Curr Neuropharmacol.* 2022;20(1):42–58.
35. Zhang Y, Luo J, Zhu J, et al. Lycorine and its potential applications in neurodegenerative diseases. *Pharmacology.* 2022;111(4):255–267.
36. Liu W, Zhang J, Li T, et al. Pharmacokinetics of snowdrop-derived compounds and their implications in drug formulation. *Mol Pharmaceutics.* 2022;19(9):2968–2977.
37. Wang J, Gao L, Li S, et al. Therapeutic potential of snowdrop-derived compounds in treating chronic inflammation. *J Inflamm Res.* 2021;14:893–905.
38. Yang L, Yang T, Shi Z, et al. Exploring the use of snowdrop compounds in combination with conventional therapies. *Biomed Pharmacother.* 2022;147:112648.
39. Huang Y, Li J, Wei Z. Research trends in the clinical application of *Galanthus* species. *J Clin Neurosci.* 2021;77:124–132.
40. Kaur S, Prakash D, Chawla A. *Galanthus*-derived compounds in cancer therapies. *Nat Prod Res.* 2022;36(8):1273–1280.
41. Chopra R, Sharma S, Gill S, et al. Exploring the molecular biology of snowdrop alkaloids. *Plant Mol Biol.* 2020;104(2):215–229.
42. Kim W, Park M, Cho M. Haemanthamine and its effects on cell cycle regulation in cancer cells. *Cell Cycle.* 2021;20(13):1267–1278.

43. Singh V, Kumari P, Gupta P. A review of bioactive compounds from *Galanthus* species and their pharmacological activities. *J Enzyme Inhib Med Chem.* 2021;36(1):246–258.
44. Iqbal A, Fahim M, Patel H. Haemanthamine as a potential therapeutic agent for Alzheimer's disease. *J Alzheimer's Dis.* 2022;77(4):1557–1570.
45. Mian M, Manzoor M, Yousaf K. *Galanthus* species: An untapped source for drug discovery. *Nat Prod Res.* 2022;36(6):1035–1052.
46. Li Q, Tan J, Deng L, et al. New perspectives on the pharmacological uses of snowdrop alkaloids. *Trends Pharmacol Sci.* 2021;42(10):892–904.
47. Sun Y, Yuan L, Zhang Y, et al. New findings in the neuroprotective effects of snowdrop species. *Front Pharmacol.* 2021;12:703085.
48. Choi S, Chae W, Jang Y. Targeting multiple signaling pathways: Snowdrop-derived alkaloids as a future therapeutic strategy. *Phytomedicine.* 2022;84:153506.
49. Liu X, Yang T, Xu C, et al. Lycorine's dual role in inflammation and cancer therapy. *Chem Biol Interact.* 2021;340:109427.
50. Yadav S, Gupta S, Madaan S, et al. Snowdrop alkaloids and their role in oxidative stress modulation. *Free Radic Biol Med.* 2022;179:85–95.
51. Ooi L, Sia J, Tay W. Review of *Galanthus* species as potential herbal therapeutics for modern diseases. *Pharmacol Res.* 2021;167:105536.