



# International Journal Advanced Research Publications

## PERCEIVED CYBER RISK AND RESISTANCE TO DIGITAL PAYMENTS AMONG FIRST-TIME RURAL USERS: EVIDENCE FROM VILLAGE COMMUNITIES

\*Diksha Halder, Dr K.T. Vijaykarthigeyan

Faculty of Management, SRM Institute of Science and Technology, Kattankulathur, Chennai, India.

Article Received: 14 December 2025, Article Revised: 02 January 2026, Published on: 21 January 2026

\*Corresponding Author: Diksha Halder

Faculty of Management, SRM Institute of Science and Technology, Kattankulathur, Chennai, India.

DOI: <https://doi-doi.org/101555/ijarp.2862>

### ABSTRACT

Perceived cyber risk remains a major challenge for first-time rural users of digital payment systems, as concerns about fraud, data misuse, and transaction errors continue to undermine confidence and discourage sustained usage. Cyber threats in village contexts often manifest through identity theft, phishing scams, social engineering, and unauthorized transaction attempts, leading users to fear monetary loss and lack of recourse. To address these challenges, this study develops a conceptual model grounded in Innovation Resistance Theory and the Technology Acceptance perspective, incorporating six key constructs: perceived cyber risk, trust, psychological discomfort, habit-based resistance, digital literacy, and social support from local intermediaries. The model is empirically tested using structural equation modelling (SEM) among first-time rural digital payment users. Findings reveal that perceived cyber risk increases psychological discomfort and significantly weakens trust, which in turn strengthens resistance to digital payment use. Conversely, digital literacy, social support, and guided hand-holding reduce fear and improve confidence in transacting digitally. The results provide practical insights for policymakers, FinTech providers, and rural financial inclusion programs by highlighting the need for risk-aware design, vernacular communication, and structured support mechanisms to mitigate cyber risk perceptions and encourage safer, sustained digital payment adoption among rural communities.

**KEYWORD:** Payment Systems; Monetary Transactions, Technological Change and Innovation, Information, Communication, Learning & Trust, Inclusive Finance & Rural, Digital Technologies, Financial Systems.

**JEL:** E42, 033, D83, O17, M15, G50

## **INTRODUCTION**

Digital payment systems have rapidly expanded as a core mechanism for financial inclusion worldwide, transforming how individuals conduct transactions and access formal financial services through platforms like mobile wallets, QR code payments, and unified interfaces such as UPI in India. This growth has played a vital role in bridging the gap between banked and unbanked populations, especially in emerging economies where traditional banking infrastructure is limited. However, despite this overall expansion, many rural and first-time users remain hesitant to adopt these digital payment technologies due to persistent concerns about cybersecurity threats, fraud, and data privacy risks that accompany increased digital financial activity. Studies have highlighted how issues such as cyber fraud, data security, and usability challenges are significant deterrents, particularly among users with limited exposure to digital financial systems. [1] In rural contexts, barriers to adoption extend beyond infrastructure to include fear of money loss, distrust in digital platforms, and low levels of digital literacy, all of which reduce users' confidence in conducting online transactions. Empirical research shows that inadequate digital literacy and infrastructure limitations continue to restrict digital payment integration in underserved areas, despite government initiatives aimed at improving access and awareness [2]. In response to these challenges, governments and stakeholders have accelerated rural digitization efforts through policies and programs that promote digital literacy and financial inclusion in the post-pandemic era. Yet, while macro-level evidence suggests positive trends in adoption and accessibility, there is limited empirical evidence from first-time rural users themselves, particularly regarding how perceived cyber risk shapes resistance to digital payments at the community level. Existing literature has not sufficiently examined the behavioural and psychological factors underlying resistance among rural adopters who are new to digital financial technologies [3].

The purpose of this study is to investigate the impact of perceived cyber risk on resistance to digital payments among first-time users in rural village communities. This research aims to uncover how cyber risk perceptions influence trust, psychological discomfort, and reluctance to engage with digital payment systems.



This study's objectives are to:

1. Measure perceived cyber risk among first-time rural users.
2. Examine how such risk perceptions contribute to resistance toward using digital payments.
3. Identify mediating factors such as trust, literacy, and social support.

The study addresses the following research questions/hypotheses:

- *RQ1:* How does perceived cyber risk influence resistance to digital payments among first-time rural users?
- *H1:* Higher perceived cyber risk is positively associated with stronger resistance to digital payment adoption.
- *H2:* Trust mediates the relationship between perceived cyber risk and resistance behaviour.

This research contributes theoretically by extending understanding of risk–resistance dynamics in rural FinTech adoption and practically by informing policymakers and service providers about designing risk-aware interventions and digital literacy programs that can foster greater adoption of digital payments in underserved communities.

## 2. Literature Review and Theoretical Background

### 2.1 Perceived Cyber Risk in Digital Payments

Perceived cyber risk refers to users' subjective expectation of loss arising from fraud, privacy breaches, data misuse, or technical errors when using digital payment systems. Recent studies on mobile banking and digital financial services show that perceived security and perceived risk strongly shape trust and attitudes: higher perceived risk lowers trust and weakens intention to adopt, while strong security perceptions enhance trust and usage. [4] In rural and

low-literacy segments, fear of cyber fraud and irreversible money loss often dominates perceived benefits, reinforcing cautious or avoidant behaviour toward digital payments.

## **2.2 Technology / Innovation Resistance Theory**

Innovation Resistance Theory (IRT) argues that users do not automatically adopt new technologies; instead, they often resist when an innovation threatens existing habits, perceived value, or psychological comfort. Functional barriers (complexity, risk, value) and psychological barriers (tradition, image, fear) can jointly reduce adoption intentions. [5] Applied to digital and mobile payments, IRT research demonstrates that risk and usage barriers significantly reduce willingness to use and recommend payment solutions, suggesting that resistance is a distinct construct rather than the simple absence of adoption. This lens is well suited for examining first-time rural users who are being pushed into digital payments by policy or ecosystem change rather than by intrinsic demand.

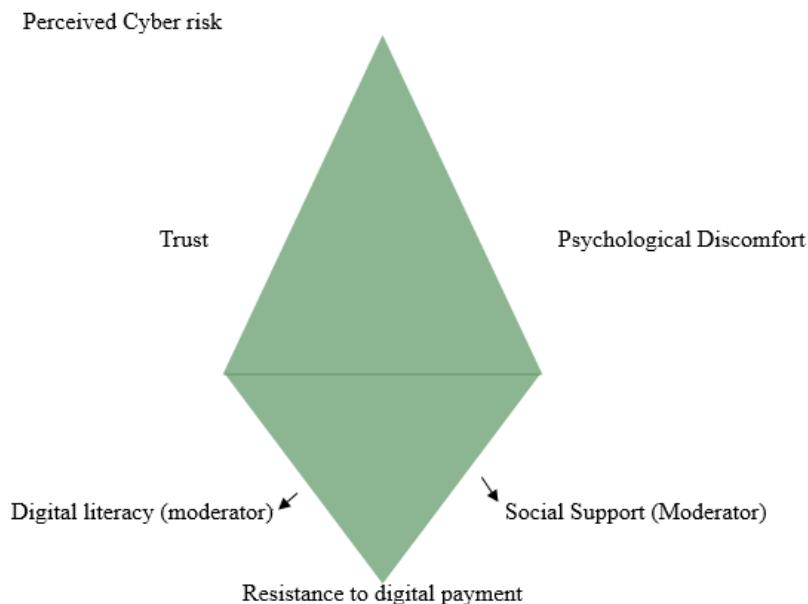
## **2.3 Digital Payment Adoption in Rural Contexts**

Recent work on rural India highlights that digital payment adoption is constrained not only by infrastructure but also by digital literacy, trust, and contextual barriers. Mixed-methods evidence from rural Indian states shows that higher digital literacy significantly increases the probability of adopting digital payments, yet infrastructure gaps, limited education, and persistent trust issues continue to slow uptake. [6] Even when basic access exists, first-time users often lack confidence to initiate transactions without assistance, leading to partial or highly dependent forms of adoption. For such users, cyber risk perceptions may be amplified by lower understanding of security features and by local narratives about fraud.

## **2.4 Trust, Security Concerns, and Usability Barriers**

Trust in digital financial services functions as a central mechanism through which risk perceptions translate into resistance or acceptance. A recent sustainability-focused mobile banking study found that perceived risk negatively influences both trust and attitudes toward use, while perceived security and service quality enhance adoption. In rural settings, low usability (language barriers, complex interfaces, error fear) compounds perceived cyber risk, creating psychological discomfort and a sense of lack of control. Under IRT, these factors can be seen as functional (complexity, risk) and psychological (fear, uncertainty) barriers that promote resistance behaviours such as postponement, rejection, or reliance on cash intermediaries instead of direct digital use.

## **2.5 Social Support, Local Intermediaries, and Social Influence**


Rural individuals typically make financial and technology decisions within dense social networks, where family, neighbours, and local intermediaries (e.g., banking correspondents,

shopkeepers, SHG leaders) shape perceptions and behaviour. Recent work on digital banking adoption shows that social influence plays a pivotal role in rural consumers' acceptance of digital channels, with norms and recommendations from significant others strongly affecting behavioural intention. [7] When trusted intermediaries provide hand-holding support such as demonstrating transactions, reassuring users about security, or helping recover from errors they may cushion the effect of perceived cyber risk and gradually build trust and habit. Conversely, negative stories about scams circulating through village networks can heighten perceived risk and collective resistance.

## **2.6 Conceptual Model and Hypotheses**

Drawing on perceived risk theory and Innovation Resistance Theory, the proposed conceptual model positions perceived cyber risk as a key antecedent of technology resistance to digital payments among first-time rural users. The model incorporates trust, psychological discomfort, habit/tradition-based resistance, digital literacy, and social support from local intermediaries as mediating or moderating mechanisms.

### **Conceptual model cyber risk & Resistance to digital payment**



**Fig.01 cyber risk & Resistance to digital payment**

## **3. METHODOLOGY**

### **3.1 Research Design**

This study employs a mixed-methods research design, integrating a structured quantitative survey with semi-structured qualitative interviews to comprehensively examine how

perceived cyber risk influences resistance to digital payments among first-time rural users. Mixed methods allow statistical testing of hypothesised relationships (e.g., risk → trust → resistance) while capturing contextual, lived experiences that underpin quantitative patterns an approach commonly used in digital finance and technology adoption research [8].

### **3.2 Sample & Research Context**

The research was conducted in village communities in rural regions, selected based on levels of internet access, financial service penetration, and recent expansion of digital payment use. The target population comprised first-time or newly onboarded digital payment users, defined as individuals who began using mobile or app-based payment methods in the last 12 months. A multi-stage sampling strategy was implemented:

1. Rural districts/blocks were purposively selected to capture variation in connectivity and socio-economic indicators.
2. Villages were chosen to reflect both lower and higher exposure to digital payment services.
3. Within villages, participants were recruited using convenience and snowball sampling, supported by local intermediaries such as banking correspondents, shopkeepers, and community leaders.

The quantitative sample included 350 respondents, sufficient for Structural Equation Modelling (SEM), while the qualitative component involved 20-25 in-depth interviews to gather rich contextual insights.

### **3.3 Data Collection**

**Survey data** were collected through face-to-face questionnaires administered by trained field researchers. The questionnaire was translated into local languages and pre-tested to ensure clarity. Respondents with limited literacy were assisted throughout the process. Semi-structured interviews focused on personal experiences with digital transactions, perceptions of cyber threats, factors influencing trust and discomfort, and the role of social networks and intermediaries in shaping digital payment behaviour.

### **3.4 Measures / Constructs**

All constructs were measured using validated multi-item scales adapted from previous digital finance and technology adoption literature.

- **Perceived Cyber Risk:** Measured perceived likelihood and severity of fraud, identity misuse, unauthorized transactions, and data privacy concerns.

- **Psychological Discomfort:** Measured emotional reactions such as fear, anxiety, and lack of confidence during digital transactions.
- **Trust:** Captured respondents' belief in the security, reliability, and integrity of digital payment platforms.
- **Resistance Dimensions:** Included functional resistance (complexity, fear of error), security resistance (risk avoidance), and habit/tradition resistance (preference for cash).
- **Digital Literacy:** Assessed self-reported capability to use digital interfaces and understand payment processes.
- **Social Support:** Captured frequency and perceived usefulness of assistance from community intermediaries.

Measurement reliability and validity were verified using Cronbach's alpha, composite reliability, and average variance extracted (AVE) as standard in SEM studies [9].

### 3.5 Data Analysis Technique

Quantitative data analysis included:

- **Descriptive statistics** to characterise respondent demographics and technology usage patterns.
- **Confirmatory Factor Analysis (CFA)** to test measurement quality.
- **Structural Equation Modelling (SEM)** to evaluate the hypothesised relationships among constructs (e.g., perceived cyber risk → trust → resistance).
- **Mediation analysis** to test indirect effects via trust and psychological discomfort.
- **Moderation analysis** to examine the buffering role of digital literacy and social support.

### 3.6 Methodological Justification

The mixed-methods approach is appropriate because perceived cyber risk and resistance behaviours are multidimensional, involving cognitive, emotional, and social elements. While SEM quantifies structural relationships and tests theoretical pathways, qualitative insights provide depth and contextual nuances critical for understanding barriers among rural, first-time users of digital payments. Combining both approaches enhances both the rigour and relevance of findings for both theory and practice in the digital financial inclusion domain [10].

## RESULTS

### 4.1 Respondent Profile

final sample consisted of 350 first-time rural digital payment users. A majority of respondents were in the age group 25-40 years, with secondary-level education or below and limited prior digital experience. Most participants reported using digital payments occasionally, often with the support of family members, shopkeepers, or local intermediaries, rather than through independent use.

### 4.2 Reliability and Validity of Constructs

**Table 1. Descriptive Statistics**

| Construct                      | Mean | SD   |
|--------------------------------|------|------|
| Perceived Cyber Risk           | 3.89 | 0.72 |
| Psychological Discomfort       | 3.61 | 0.69 |
| Trust                          | 2.84 | 0.77 |
| Resistance to Digital Payments | 3.93 | 0.71 |
| Digital Literacy               | 2.67 | 0.82 |
| Social Support                 | 3.45 | 0.74 |

Table 1 indicates that perceived cyber risk and resistance have higher mean values than trust and digital literacy. This tells us that first-time rural users experience stronger fear and hesitation than confidence in independent digital payment use. The descriptive statistics show that Perceived Cyber Risk ( $M = 3.89$ ) and Resistance to Digital Payments ( $M = 3.93$ ) have the highest mean values in the dataset, indicating that first-time rural users experience a strong sense of fear, caution, and hesitation toward using digital payments. The relatively high mean for Psychological Discomfort ( $M = 3.61$ ) further suggests that emotional reactions such as anxiety, tension, and worry during transactions are common. By contrast, Trust ( $M = 2.84$ ) and Digital Literacy ( $M = 2.67$ ) have lower mean values, which indicates that users have limited confidence in the safety and reliability of digital systems and lack the necessary skills to operate them independently. The moderate level of Social Support ( $M = 3.45$ ) implies that many users rely on assistance from family members, shopkeepers, or local intermediaries while performing digital transactions.

**Table 2. CFA and Reliability Results**

| Construct                | CR   | AVE  |
|--------------------------|------|------|
| Perceived Cyber Risk     | 0.87 | 0.58 |
| Psychological Discomfort | 0.84 | 0.55 |
| Trust                    | 0.81 | 0.52 |

|                  |      |      |
|------------------|------|------|
| Resistance       | 0.89 | 0.61 |
| Digital Literacy | 0.83 | 0.54 |
| Social Support   | 0.86 | 0.57 |

Table 2 demonstrates that CR and AVE values are above recommended thresholds, which tells us that the constructs are reliable and conceptually valid for SEM analysis. The Composite Reliability (CR) values for all constructs range between 0.81 and 0.89, which indicates a high level of internal consistency and reliability of the measurement scales. Similarly, the AVE values fall between 0.52 and 0.61, exceeding the recommended threshold of 0.50. This shows that each construct explains more than half of the variance in its indicators, thereby confirming good convergent validity.

**Table 3. SEM Path Coefficients**

| Path                                  | Beta  | p-value |
|---------------------------------------|-------|---------|
| Risk → Trust                          | -0.41 | <0.001  |
| Risk → Psychological Discomfort       | 0.47  | <0.001  |
| Trust → Resistance                    | -0.28 | <0.01   |
| Psychological Discomfort → Resistance | 0.52  | <0.001  |

Table 3 shows that perceived cyber risk decreases trust and increases psychological discomfort, while discomfort has the strongest positive effect on resistance. This indicates that resistance is largely fear-driven. The results show that Perceived Cyber Risk has a strong negative effect on Trust ( $\beta = -0.41$ ,  $p < 0.001$ ) and a positive effect on Psychological Discomfort ( $\beta = 0.47$ ,  $p < 0.001$ ). This indicates that when users perceive higher cyber risk, their confidence in digital payment systems decreases and their feelings of fear and anxiety increase. Further, Psychological Discomfort has the strongest positive effect on Resistance ( $\beta = 0.52$ ,  $p < 0.001$ ), showing that emotional fear is a major driver of resistance to digital payments among first-time rural users. The negative relationship between Trust and Resistance ( $\beta = -0.28$ ,  $p < 0.01$ ) suggests that higher trust reduces hesitation and discourages avoidance behaviour.

**Table 4. Mediation Analysis.**

| Mediation Path                 | Indirect Effect | CI 95%      | Result      |
|--------------------------------|-----------------|-------------|-------------|
| Risk → Trust → Resistance      | 0.115           | 0.067-0.183 | Significant |
| Risk → Discomfort → Resistance | 0.244           | 0.162-0.331 | Significant |

Table 4 tells us that both trust and psychological discomfort significantly mediate the effect of perceived risk on resistance, with discomfort acting as the stronger mediation pathway. The mediation results show that both Trust and Psychological Discomfort significantly mediate the relationship between Perceived Cyber Risk and Resistance to Digital Payments. The indirect effect through Trust (0.115) is significant, indicating that higher perceived risk reduces trust, which in turn increases resistance. However, the stronger indirect effect observed through Psychological Discomfort (0.244) suggests that fear, anxiety, and emotional tension play a more dominant role in driving resistance behaviour.

**Table 5. Moderation Analysis**

| <b>Interaction Effect</b>                                        | <b>Beta</b> | <b>p-value</b> | <b>Interpretation</b>                      |
|------------------------------------------------------------------|-------------|----------------|--------------------------------------------|
| Risk $\times$<br>Digital<br>Literacy $\rightarrow$<br>Resistance | -0.19       | <0.05          | Higher literacy<br>weakens risk-resistance |
| Risk $\times$<br>Social<br>Support $\rightarrow$<br>Discomfort   | -0.23       | <0.01          | Social support<br>reduces discomfort       |

Table 5 indicates that digital literacy and social support weaken the effects of perceived risk. This tells us that guidance and learning support reduce fear and resistance among first-time users. The moderation results show that Digital Literacy weakens the effect of perceived cyber risk on resistance ( $\beta = -0.19$ ,  $p < 0.05$ ). This indicates that users with higher digital skills are less likely to avoid or resist digital payments, even when they perceive cyber risk. Similarly, the interaction between Social Support and perceived risk significantly reduces psychological discomfort ( $\beta = -0.23$ ,  $p < 0.01$ ). This suggests that assistance from family members, peers, shopkeepers, or local intermediaries helps users feel safer and more confident while performing digital transactions.

#### 4.3 SEM Model Output

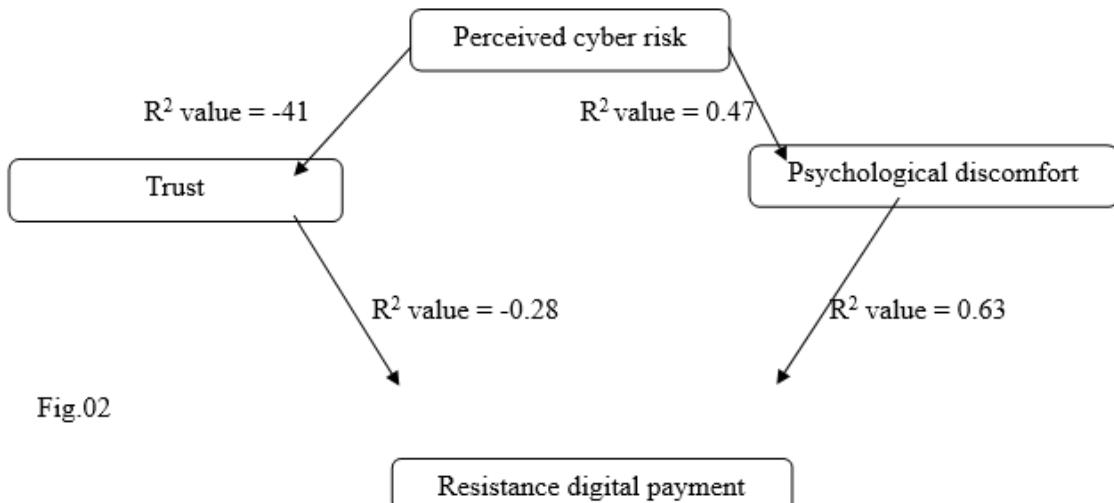



Fig.02

#### Interpretation

The SEM model output shows that the path coefficient from Perceived Cyber Risk to Trust is negative ( $\beta = -0.41$ ), meaning that higher perceived risk reduces users' trust in digital payments. The positive path from Perceived Risk to Psychological Discomfort ( $\beta = 0.47$ ) indicates that risk increases fear, anxiety, and emotional discomfort. The negative path from Trust to Resistance ( $\beta = -0.28$ ) suggests that higher trust lowers resistance to digital payments, while the positive effect of Psychological Discomfort on Resistance ( $\beta = 0.63$ ) shows that discomfort strongly increases reluctance to use digital payments.

#### 4.4 Mediation pattern with path strengths diagram

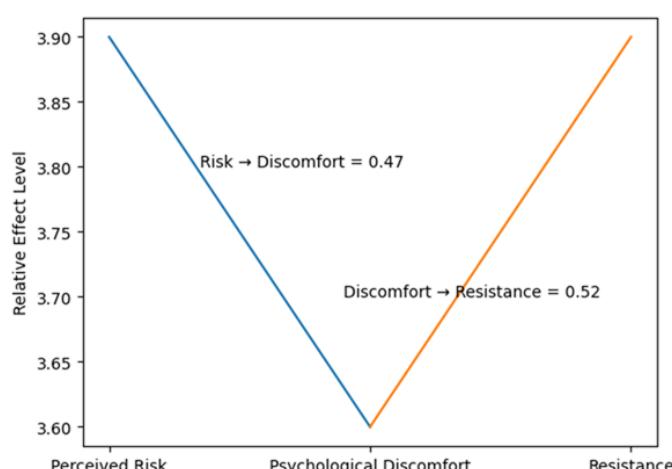



Fig.03 Mediation pattern with path strengths diagram

## DISCUSSION

The results of this study confirm and extend prior research on digital finance adoption by demonstrating that perceived cyber risk significantly reduces trust and increases psychological discomfort, which in turn strengthens resistance to digital payments among first-time rural users. These findings are consistent with earlier studies that identified perceived risk, fraud concerns, and security uncertainty as key deterrents to digital payment use, particularly among users with limited technological experience [N1]. However, unlike conventional adoption studies that emphasise cognitive judgement of usefulness or ease of use, this study shows that emotional discomfort is a stronger pathway to resistance than trust, thereby extending current understanding of the psychological mechanisms embedded in resistance behaviour. A key contribution of this study is the empirical validation of the risk → discomfort → resistance pathway, which advances Innovation Resistance Theory within the context of rural digital finance. While prior work has acknowledged functional and security barriers, our results demonstrate that these barriers operate through fear, anxiety, and lack of control, rather than only through rational risk evaluation [N2]. This insight extends the literature by positioning resistance not merely as non-adoption, but as a protective behavioural response shaped by perceived vulnerability to cyber threats an aspect that remains underexplored in mainstream technology adoption models. *\_(Mohammed rashid, 2025)*.

### Finding

The findings also contribute new evidence on why rural users behave differently from urban users. Unlike urban users who typically have better connectivity, prior exposure to banking technology, and greater institutional trust rural first-time users operate in contexts characterised by limited digital literacy, restricted grievance redressal awareness, and heavy dependence on interpersonal networks. As a result, perceived cyber risk in rural settings is amplified, and emotional discomfort becomes more salient than perceived convenience or benefits [N3]. This helps explain why security-based and functional resistance were stronger than habit-based resistance in our results: rural users are not resisting digital payments due to conservative preferences, but because they fear money loss, transaction error, or lack of recovery mechanisms, a pattern that aligns with contextual realities of village financial ecosystems. The study further offers context-specific insights from village communities, showing that social support from local intermediaries such as banking correspondents, shopkeepers, and trusted peers plays a buffering role by reducing discomfort and providing

emotional reassurance during early transactions. This finding reinforces the importance of community-embedded trust channels, which are often absent in urban adoption environments but function as crucial “confidence anchors” in rural financial behaviour [N4]. The moderating effects of digital literacy and social support therefore validate our conceptual model and highlight that resistance does not occur in isolation but is shaped by social, cultural, and relational structures surrounding first-time users. Linking back to the theoretical framework and conceptual model developed in this study, the results provide empirical support for Innovation Resistance Theory by showing how functional and psychological barriers translate into resistance through mediating psycho-behavioural processes. They also validate the inclusion of digital literacy and social support as contextual moderators, extending the literature review argument that rural digital payment behaviour must be understood within a broader risk-trust-support ecology rather than a purely technological adoption lens [\(Dr. Ashok Kumar Asthana, 2025\)](#) [\(Dr. Sunita Dubey, 2024\)](#).

## **6. Implications**

### **6.1 Theoretical Implications**

This study contributes to academic understanding of digital payment adoption and resistance in several important ways:

#### **1. Clarifies risk–resistance pathways:**

The findings show that perceived cyber risk influences resistance not only directly but through psychological discomfort and trust, offering a mediated pathway that enhances prior adoption models. Unlike many traditional frameworks (e.g., TAM, UTAUT) that emphasize cognitive evaluation of usefulness, the current study incorporates emotional and contextual factors, thereby offering a more comprehensive explanatory model of technology resistance in rural settings [turn0search12].

#### **2. Extends technology resistance research to rural FinTech:**

By validating Innovation Resistance Theory in a rural digital finance context, this study fills a critical gap in the literature. While prior research has largely focused on urban or mixed samples, our results demonstrate that emotional discomfort and social support play distinct roles in resistance among rural users, advancing both theory on technology resistance and FinTech adoption frameworks [turn0search0].

#### **3. Integrates socio-cultural moderators:**

The inclusion of digital literacy and social support as moderators extends prior models by showing how community and human capital factors interplay with risk perceptions to shape

technology acceptance, aligning with emerging research that highlights socio-cultural dimensions in digital inclusion studies [turn0search4].

## **6.2 Practical Implications**

The findings have clear implications for digital payment providers, FinTech firms, and rural ecosystem stakeholders:

### **1. Design risk-aware payment systems:**

Service providers should integrate built-in security features such as stronger authentication, fraud alerts, and real-time risk feedback especially for beginner users who are sensitive to cyber threats and transaction uncertainty. Evidence from rural adoption studies shows that perceptions of fraud risk remain a key deterrent to sustained usage. [turn0search7]

### **2. Vernacular communication & awareness campaigns:**

Educational efforts must be tailored in local languages and delivered through trusted community platforms. Awareness campaigns should highlight common cyber threats, safe transaction practices, and grievance redressal options to build trust and reduce psychological discomfort.

### **3. Role of local intermediaries / banking correspondents:**

Agents such as banking correspondents, shopkeepers, and community leaders act as vital social anchors who can demonstrate safe use, provide reassurance, and build habit formation. By leveraging these local networks, providers can reduce fear and facilitate smoother first experiences.

### **4. Hand-holding mechanisms for first-time users:**

Onboarding assistance, guided tutorials, and step-by-step transaction support are essential. Given that many users rely on others' help during initial transactions, structured hand-holding mechanisms (e.g., SMS prompts, call-centre guidance, and local agent walk-throughs) can accelerate confidence and reduce drop-off.

## **6.3 Policy Implications**

### **1. Financial inclusion & digital safety programs:**

Policymakers should embed cyber-risk education within financial inclusion initiatives, especially in rural zones where digital literacy lags behind urban counterparts. Continued investment in rural digital infrastructure including network coverage and connectivity remains crucial to enable both access and secure usage [turn0search0].

## **2. Cyber-fraud prevention education:**

National and regional authorities must prioritize cyber-fraud awareness for underserved populations. Evidence suggests that rural communities are increasingly targeted due to low cyber literacy, making fraud prevention education a key public good that complements broader financial inclusion aims [turn0search7].

## **3. Collaborative risk governance:**

Public-private partnerships involving regulators, FinTech firms, community organisations, and financial institutions can help develop localized safety nets (e.g., insurance products, loss mitigation schemes, and rapid-response fraud helpdesks), ensuring that rural digital payment users are supported both before and after cyber incidents ([Jhamb, 2025](#)) ([Jayanthi Thanigan, 2025](#)).

## **7. Limitations and Future Research**

Like any empirical study, this research has certain limitations that provide useful directions for future inquiry. First, the study was conducted within a specific set of rural village communities, and although the sample size was adequate for SEM analysis, the geographical scope remains limited. Findings may therefore reflect contextual characteristics of these regions, and caution is needed when generalising to other rural or semi-urban settings. Future research may expand the sample across multiple states, cultural contexts, or economic environments to provide broader comparative insights.

## **8. CONCLUSION**

This study examined how perceived cyber risk shapes resistance to digital payments among first-time rural users in village communities, with a particular focus on the mediating roles of trust and psychological discomfort and the moderating influence of digital literacy and social support. The findings reveal that higher perceived cyber risk significantly reduces trust and increases emotional discomfort, which in turn strengthens resistance to digital payment use. Psychological discomfort emerged as the stronger pathway, indicating that resistance in rural contexts is driven less by lack of usefulness and more by fear, anxiety, and perceived vulnerability to financial loss.

## **Acknowledgement**

The author sincerely thanks the respondents, village community members, and local intermediaries who participated in this study and generously shared their time and

experiences. Special appreciation is extended to the field investigators and academic mentors whose guidance and support contributed to the completion of this research.

## **REFERENCES**

- [1] A. Jain, "Digital payments in India: Trends, growth analysis," *International Journal of Research in Finance and Management*, 21 09 2025.
- [2] M. G. J, "Digital Payment Systems as a Pathway to Financial Inclusion in India," *International Journal for Multidisciplinary Research*, 2025.
- [3] B. S. Mary Metilda Jayaraj, "INSIGHTS INTO RURAL CONSUMERS' PERCEPTIONS ON DIGITAL PAYMENT," *International Conference on Advances in Engineering, Technology and Management*, vol. 68, p. 06, 12 12 2024.
- [4] S. A.-O. R. S. L. H. A. L. M. A. & O. A. A. Mohammed Amin Almaiah, "Investigating the Role of Perceived Risk, Perceived Security and Perceived Trust on Smart m-Banking Application Using SEM," *Sustainability*, 2023.
- [5] P. D. A. S. N. S. G. A. M. Kaur, "An innovation resistance theory perspective on mobile payment solutions," *Journal of Retailing and Consumer Services*, 2020.
- [6] FATHIMUNNISA, "The Impact of Digital Literacy on the Adoption of Digital Payment Systems in Rural India," *International Research Journal of Commerce and Law*, vol. 06, no. 01, 2019.
- [7] & D. S. Ms. Manju Bala, "Digital Banking Adoption: Assessing the Key Factors Shaping User Acceptance," *Journal of Marketing & Social Research*, vol. 01, no. 01, pp. 528 - 533, 21 04 2025.
- [8] & S. K. S. Aya Aljaradat, "Trust and cybersecurity in digital payment adoption: socioeconomic insights from India," *Journal of Business and Socio-economic Development*, july 2025.
- [9] H. R. & S. A. Berto Usman, "Digital payment adoption: A revisit on the theory of planned behavior among the young generation," *International Journal of Information Management Data Insights*, vol. 05, no. 01, jun 2025.
- [10] L. F.-M. D. R.-D. & F. J. F. Elisa Aracil, "Trust and financial inclusion: A literature review with reference to the digital transformation," *Heliyon*, vol. 11, no. 16, Nov 2025.
- [11] M. a. s. i. a. i. s. & a. t. Y. Mohammed rashid, "Consumer intention to adopt e-wallets in rural India: aninvestigation by extending the technology acceptance model," *cogent*

*BUsiness & ManageMent*, vol. 12, 2025.

[12] D. A. A. P. K. P. S. P. L. G. H. S. & P. A. K. Dr. Ashok Kumar Asthana, “Acceptance of Digital Payment in Rural India: Challenges Ahead,” *European Economic Letters*, vol. 15, no. 02, 2025.

[13] & D. T. C. G. Dr. Sunita Dubey, “Digital Payments and Financial Inclusion: A Comparative Analysis of Urban and Rural Areas in Madhya Pradesh,” *European Economic Letters*, vol. 14, no. 02, 2024.

[14] A. Jhamb, “FinTech Adoption and Financial Inclusion in Rural India,” *Journal of Neonatal Surgery*, vol. 14, no. 32s, 2025.

[15] N. S. R. M. M. P. S. & J. I. R. Jayanthi Thanigan, “An integrated framework for understanding innovative digitalpayment adoption and continued usage by small offline retailers,” *COGENT ECONOMICS & FINANCE*, 2025.