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ABSTRACT

Autonomous systems increasingly rely on Artificial Intelligence (Al) techniques to monitor
system behavior and detect anomalies arising from cyber-attacks, sensor failures, or abnormal
operational patterns. Although existing machine learning and deep learning models achieve
high accuracy in anomaly detection, many of them function as black-box systems and lack
transparency in their decision-making processes. This absence of interpretability limits trust,
validation, and adoption in safety-critical autonomous environments. To address this
challenge, this paper proposes an Explainable Decision Tree—based framework for anomaly
detection in autonomous systems. The proposed approach employs a Decision Tree classifier
to identify anomalous and normal system behavior while providing clear and interpretable
explanations through feature importance analysis and decision rule paths. The framework is
evaluated using datasets derived from autonomous, 10T, and Vehicular Ad Hoc Network
(VANET) environments, which contain features related to sensor readings, system states, and
communication behavior. Experimental results demonstrate that the Decision Tree model
achieves reliable anomaly detection performance while maintaining inherent interpretability.
The explainable nature of the proposed framework enables users to understand which features
contribute to anomaly detection decisions, thereby improving transparency and
accountability. By combining accurate classification with human-understandable
explanations, the proposed framework enhances trust, supports safety assurance, and

promotes the adoption of Al-driven solutions in autonomous and intelligent systems.
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INTRODUCTION

The rapid advancement of autonomous and Internet of Things (loT)—enabled systems has
transformed various domains, including transportation, smart cities, industrial automation,
healthcare, and intelligent surveillance. Autonomous systems are designed to operate with
minimal human intervention by sensing their environment, processing large volumes of data,
and making real-time decisions. With the increasing deployment of autonomous vehicles,
smart sensors, and connected devices, these systems have become highly complex and data-
driven. As a result, ensuring reliability, safety, and security has become a critical research
challenge. Any abnormal behavior, whether caused by cyber-attacks, sensor malfunctions,
communication failures, or unexpected environmental conditions, can lead to severe
consequences in safety-critical applications. Artificial Intelligence (Al) plays a central role in
enabling autonomy by allowing systems to learn patterns from data and make intelligent
decisions. Machine Learning (ML) and Deep Learning (DL) models are widely used for tasks
such as anomaly detection, fault diagnosis, intrusion detection, and predictive maintenance in
autonomous and loT environments. These models analyze high-dimensional sensor and
communication data to distinguish between normal and anomalous behavior. In real-time
autonomous systems, Al-driven anomaly detection is essential to prevent system failures,

detect malicious activities, and maintain operational stability.

However, the growing dependence on Al for real-time decision-making introduces significant
challenges related to transparency and trust. Many state-of-the-art anomaly detection
approaches rely on complex ML and DL models such as neural networks, ensemble models,
and deep architectures. While these models often achieve high detection accuracy, they
typically operate as black-box systems, providing predictions without explaining the
reasoning behind their decisions. In safety-critical autonomous environments, such as
autonomous driving systems or industrial 10T networks, this lack of interpretability is a major
concern. System operators, engineers, and regulatory authorities require not only accurate
predictions but also a clear understanding of why a particular behavior is classified as
anomalous. Security threats further amplify the importance of explainable anomaly detection.
Autonomous and loT-enabled systems are vulnerable to a wide range of attacks, including

spoofing, data injection, denial-of-service, and protocol manipulation. Additionally, non-
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malicious anomalies such as sensor drift, hardware degradation, and environmental
disturbances can also affect system performance. Traditional black-box Al models may detect
anomalies but fail to provide insights into the root causes of these events. This makes system
debugging, incident analysis, and preventive action extremely difficult. In real-world
deployments, unexplained Al decisions can reduce user confidence and hinder large-scale
adoption of autonomous technologies. To address these challenges, Explainable Artificial
Intelligence (XAI) has emerged as an important research direction. XAl aims to make Al
systems more transparent, interpretable, and accountable by providing human-understandable
explanations for model predictions. Explainability is particularly crucial in safety-critical
systems, where decisions must be validated and justified. Regulatory frameworks and ethical
guidelines increasingly emphasize the need for explainable and trustworthy Al. In this
context, anomaly detection models must not only achieve high accuracy but also offer clear
explanations regarding which features or conditions led to an anomalous classification.
Among various machine learning algorithms, Decision Tree models are particularly well-
suited for explainable anomaly detection. Decision Trees inherently provide interpretable
decision-making by representing classification logic as a set of hierarchical rules based on
feature thresholds. Each decision path from the root node to a leaf node corresponds to a clear
and understandable rule that explains why a particular instance is classified as normal or
anomalous. Unlike complex black-box models, Decision Trees allow users to trace
predictions back to specific features and conditions, making them highly transparent and

suitable for autonomous systems.

Another key motivation for using Decision Tree models is their ability to identify feature
importance directly during the training process. By analyzing how features are used to split
the data, Decision Trees highlight the most influential attributes contributing to anomaly
detection. This feature-level interpretability is essential for understanding system behavior,
diagnosing faults, and improving system design. Furthermore, Decision Trees are
computationally efficient, easy to implement, and capable of handling both numerical and
categorical data, which are common in autonomous and loT datasets. Despite these
advantages, Decision Tree—based approaches have received comparatively less attention in
the context of explainable anomaly detection for autonomous systems, as recent research has
largely focused on deep learning and ensemble methods. This creates an opportunity to revisit
classical, interpretable machine learning models and demonstrate their effectiveness when

combined with a systematic explainability framework. By leveraging the inherent
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interpretability of Decision Trees, it is possible to design anomaly detection systems that

balance performance and transparency.

In this paper, we propose an Explainable Decision Tree—based framework for anomaly
detection in autonomous systems. The proposed framework integrates data preprocessing,
Decision Tree—based classification, and explainability mechanisms to detect anomalous
behavior while providing clear and understandable explanations. The system analyzes
autonomous and loT-related datasets containing sensor, operational, and communication
features and classifies system behavior into normal and anomalous categories. Decision rules
and feature importance measures are used to explain model predictions, enabling users to

understand the reasoning behind anomaly detection decisions.

The main contributions of this work are threefold. First, it presents an interpretable anomaly
detection framework based on Decision Tree models for autonomous and loT-enabled
systems. Second, it demonstrates how feature importance and decision paths can be used to
explain anomaly detection results in a human-understandable manner. Third, it highlights the
importance of explainability in enhancing trust, transparency, and safety in Al-driven
autonomous environments. The proposed framework aims to bridge the gap between accurate
anomaly detection and explainable decision-making, thereby supporting the development of

trustworthy autonomous systems.

LITERATURE SURVEY

This section reviews existing research related to anomaly detection in autonomous systems
and the role of Explainable Artificial Intelligence (XAI) in improving transparency and trust.
Recent studies highlight the growing need for reliable anomaly detection mechanisms in
autonomous and loT-enabled environments due to increasing system complexity and security
threats [1]. The review discusses commonly used approaches, their strengths and limitations,
and identifies the research gap addressed by this work. Anomaly detection is a critical
component in ensuring the safety and reliability of autonomous systems. Early research
primarily relied on rule-based techniques, where predefined thresholds and expert-defined
rules were used to detect abnormal behavior [2]. Although these systems are easy to interpret,
they lack adaptability and perform poorly in dynamic and data-intensive autonomous
environments. To overcome these limitations, machine learning (ML) approaches were
introduced to automatically learn patterns from system data and improve anomaly detection
accuracy. Traditional ML algorithms such as Decision Trees, Random Forests, Support Vector
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Machines, and k-Nearest Neighbors have been widely applied for anomaly detection in
autonomous and loT-enabled systems [3], [4]. Decision Trees are particularly valued for their
rule-based structure and interpretability, while Random Forests enhance performance by
combining multiple trees. In recent years, deep learning (DL) models such as Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks have gained
popularity due to their ability to capture complex spatial and temporal relationships in sensor
and communication data [5], [6]. Although these models achieve high detection accuracy,
their internal decision-making processes are often opaque, resulting in limited interpretability.
Consequently, many ML and DL-based anomaly detection systems function as black-box
models, which restricts their adoption in safety-critical autonomous applications [7].
Explainable Artificial Intelligence (XAI) has emerged as an important research area to
address the transparency limitations of black-box Al models [8]. XAl techniques aim to
provide human-understandable explanations that describe how and why Al models arrive at
specific decisions. In anomaly detection, explainability helps system operators understand the
reasons behind anomalous classifications and identify the contributing factors. Various XAl
methods have been proposed to improve model transparency, including feature importance
analysis, rule-based explanations, and visualization techniques [9]. Feature importance
methods highlight the most influential input variables affecting predictions, while rule-based
explanations present decision logic in an interpretable form. Inherently interpretable models,
such as Decision Trees, naturally support explainability by representing classification
decisions as a set of hierarchical rules [10]. Explainable models offer several benefits,
including increased trust, easier validation, improved debugging, and better compliance with
ethical and regulatory requirements. These advantages make XAl particularly valuable in
safety-critical autonomous systems, where transparency is essential [11]. Despite significant
progress in anomaly detection and explainable Al research, a clear research gap remains.
Many existing studies prioritize detection accuracy using complex ML and DL models, often
at the expense of interpretability [12]. Although some research incorporates explainability
techniques, these are frequently applied as post-hoc solutions and are not tightly integrated
into the anomaly detection framework [13]. Moreover, limited studies focus on combining
inherently interpretable models, such as Decision Trees, with explainable Al principles for

anomaly detection in autonomous systems.

In particular, there is a lack of frameworks that provide feature-level explanations and clear

decision rules to support root cause analysis and system validation [14]. This gap highlights

www.ijarp.com (



http://www.ijarp.com/

International Journal Advanced Research Publications

the need for interpretable anomaly detection models that balance performance and
transparency. Addressing this need, the proposed research focuses on developing an
Explainable Decision Tree—based framework that enables effective anomaly detection while
providing meaningful, feature-level explanations for autonomous systems. Recent
advancements in autonomous and loT-enabled systems have led to an increased reliance on
Artificial Intelligence (Al) and Machine Learning (ML) techniques for monitoring system
behavior and detecting anomalies. A significant body of research has explored the use of ML
and Deep Learning (DL) models to identify abnormal patterns caused by cyber-attacks,
sensor malfunctions, communication failures, and unexpected environmental conditions [1],
[2]. These approaches have demonstrated strong performance in terms of detection accuracy
and scalability across various autonomous system applications, including intelligent
transportation systems, industrial automation, and smart infrastructure. However, a critical
limitation repeatedly highlighted in the literature is that most existing anomaly detection
models function primarily as predictive systems without providing explanations for their
decisions [3], [4]. Complex ML and DL models such as neural networks, ensemble methods,
and deep architectures are often treated as black-box models, where the internal reasoning
behind predictions remains hidden. Although these models can accurately label an instance as
normal or anomalous, they fail to communicate why a particular decision was made. This
limitation has been identified as a major obstacle to the practical deployment of Al-based

anomaly detection systems in real-world autonomous environments [5].

The lack of interpretability directly impacts trust and validation, especially in safety-critical
systems. Several studies emphasize that in autonomous driving, industrial 10T, and cyber-
physical systems, unexplained Al decisions can lead to hesitation in adoption by system
operators and regulatory authorities [6], [7]. In such environments, Al systems are expected
not only to perform accurately but also to justify their decisions in a transparent and
understandable manner. Without clear explanations, it becomes difficult to assess whether a
detected anomaly is the result of genuine system failure, malicious activity, data bias, or
model error [8]. This uncertainty reduces confidence in Al-driven decision-making and limits
its acceptance in mission-critical applications. Another important issue identified in the
literature is the difficulty of validating and debugging black-box anomaly detection models.
When a model flags an anomaly without explanation, system engineers are unable to
determine whether the alert is meaningful or a false positive [9]. This often results in

unnecessary system interventions or overlooked failures. Furthermore, the absence of
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explainability complicates model auditing, performance tuning, and compliance with

emerging Al governance and ethical guidelines [10]. As autonomous systems become more

widespread, regulatory frameworks increasingly demand transparency, accountability, and

explainability from Al-based solutions.

Table 1. Comparative Analysis of Existing Studies on Anomaly Detection and

Explainable Al.
Study / | Applica | Model Focus of | Approac | Key Explaina | Limitatio
Refere | tion Used Study h Contribu | bility ns
nce Domain tions Support
Study | Autono | Deep Anomaly | Supervise | High No Black-box
[1] mous Neural detection | d DL- | detection model, no
Driving | Network | accuracy | based accuracy interpreta
classificat | for bility
ion complex
patterns
Study | VANETs | CNN Network | Feature Improved | No High
[2] intrusion | extraction | detection computati
detection | using of onal cost
CNN network
attacks
Study | loT LSTM Time- Sequential | Captures | No Difficult
[3] Systems series data temporal to
anomaly | modeling | dependen interpret
detection cies prediction
S
Study | Cyber- Random | Fault Ensemble | Robust Partial Limited
[4] Physical | Forest detection | learning performan | (Feature local
Systems ce against | importanc | explanatio
noise e) ns
Study | Smart SVM Power Margin- Effective | No Black-box
[5] Grid anomaly | based for high- nature
detection | classificat | dimension
ion al data
Study | Autono | Autoenco | Unsuper | Reconstru | Detects No No
[6] mous ders vised ction error | unknown explanatio
Vehicles anomaly | analysis anomalies n of
detection detected
anomalies
Study | Industria | Hybrid Fault Combined | Improved | Partial Increased
[7] | loT ML diagnosis | ML detection model
technique | accuracy complexit
S y
Study | Healthca | XGBoost | Anomaly | Gradient | Strong Partial Limited
[8] re loT detection | boosting | predictive interpreta
performan bility for
ce end users
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Study | Autono | DL + | Explaina | Post-hoc | Introduce | Yes (Post- | Explanati
[9] mous XAl ble explanatio | d hoc) ons  not
Systems detection | n methods | explainabi integrated
lity layer
Study | loT Rule- Intrusion | Expert- Fully Yes Poor
[10] Security | based detection | defined interpreta scalability
System rules ble
Propos | Autono | Decision | Explaina | Rule- Transpare | Yes Limited
ed mous & | Tree ble based ML | nt (Inherent) | depth
Work | loT anomaly | with decisions, compared
Systems detection | feature feature- to DL
analysis level
insight
METHODOLOGY

This section explains the methodology followed to develop and evaluate the proposed
Explainable Decision Tree—based anomaly detection framework. The methodology includes
dataset selection, data preprocessing, Decision Tree—based classification, and explainability
mechanisms. The experiments are implemented using Python on Google Colab, with
supporting analysis using tools such as JASP for statistical validation.

A. Dataset Description

The proposed framework is evaluated using datasets collected from autonomous and loT-
enabled systems, which represent real-world operational and communication behavior. These
datasets include records generated by sensors, system components, and network protocols
operating in autonomous environments. The dataset consists of multiple features that describe
system behavior, including position-related attributes, speed values, sensor readings, and
communication protocol behavior. These features collectively capture both normal
operational patterns and abnormal conditions caused by faults or malicious activities.

Each data instance in the dataset is assigned a class label to support supervised learning. The
labels are defined as Normal (0) for regular system behavior and Anomalous (1) for abnormal
or suspicious behavior. This binary labeling enables the Decision Tree classifier to learn clear
decision boundaries between normal and anomalous states.

B. Data Preprocessing

Before applying the Decision Tree algorithm, the raw dataset undergoes a series of
preprocessing steps to improve data quality and model performance. First, missing value
removal is performed to eliminate incomplete or corrupted records that may introduce noise
into the learning process. Handling missing data ensures that the model is trained on reliable

and consistent information.
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Next, feature normalization is applied to scale numerical features to a common range.
Although Decision Trees are less sensitive to feature scaling compared to distance-based
algorithms, normalization helps maintain uniformity and improves interpretability when
analyzing feature importance. To address class imbalance between normal and anomalous
samples, data balancing techniques are applied. This step prevents the model from becoming
biased toward the majority class and improves its ability to detect rare anomaly instances.
Finally, the dataset is divided into 70% training data and 30% testing data. The training set is
used to build the Decision Tree model, while the testing set is used to evaluate its
generalization performance on unseen data.

C. Decision Tree Algorithm

The Decision Tree algorithm is a supervised machine learning technique that performs
classification by recursively partitioning the dataset into smaller subsets based on feature
values. The model is structured as a tree, where each internal node represents a decision
based on a feature, each branch represents an outcome of the decision, and each leaf node
represents a class label.

During training, the Decision Tree selects the most informative feature at each node to split
the data. This selection is based on measures such as Information Gain or the Gini Index,
which quantify how well a feature separates normal and anomalous instances. By repeatedly
applying this splitting process, the model constructs a hierarchical structure that captures
decision rules in an interpretable form. The resulting classification is rule-based, meaning that
each prediction follows a clear path from the root node to a leaf node. This property makes
Decision Trees inherently interpretable, as users can trace the exact sequence of feature-based
decisions that lead to a classification outcome.

D. Mathematical Formulation

The uncertainty or impurity of a dataset is measured using Entropy, which is defined as:
Entropy (5} = —Z;J.- log, (p; )
=1

where p; represents the probability ofclass in the dataset S

E. Explainability

Explainability is a key component of the proposed framework. Since Decision Trees are
inherently interpretable, they provide transparency through feature importance and decision
paths.

F. Feature importance is derived by analyzing how frequently and effectively each feature is
used to split the data across the tree. Features that contribute more to reducing impurity are

www.ijarp.com (



http://www.ijarp.com/

International Journal Advanced Research Publications

considered more important. This helps identify which system attributes have the greatest
influence on anomaly detection.

G. Decision paths and rules represent the sequence of conditions that lead to a specific
classification. Each path from the root to a leaf node can be expressed as an IF-THEN rule,
making it easy for users to understand why a particular instance is classified as normal or
anomalous. These explanations support root cause analysis, model validation, and increased

trust in Al-driven autonomous systems.
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Figure 1. System Architecture of the Proposed Explainable Decision Tree—Based

Anomaly Detection Framework.

Figure 1 illustrates the overall architecture of the proposed explainable anomaly detection
framework. Autonomous and IoT system data are collected and preprocessed before being
classified using a Decision Tree model. The explainability module provides feature

importance and decision rules, enabling transparent and interpretable anomaly detection.
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Spatiotemporal Attention Motion Flow Processing
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1 I
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Figure 2. Multimodel Representation of the Proposed Decision Tree—Based Framework.

Figure 2 presents the multimodel representation of the proposed framework, where data
preprocessing, Decision Tree classification, feature importance analysis, and rule extraction

operate together to provide both accurate anomaly detection and explainable outcomes.
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Figure 3: Explainability Through Feature Importance and Decision Rules.

Figure 3 illustrates the explainability mechanism of the Decision Tree model. Feature
importance highlights influential attributes, while decision paths provide rule-based

explanations for anomaly detection decisions.

RESULTS AND DISCUSSION

This section presents and analyzes the experimental results obtained from the proposed
Explainable Decision Tree—based anomaly detection framework. The performance of the
model is evaluated using standard classification metrics, feature importance analysis, and
decision rule interpretation. A comparative analysis with black-box models is also discussed
to highlight the benefits of interpretability.

Table 2 Classification Report Decision Tree.

precision recall fl-score support
good_left 1.00 |1.00 1.00 16973
regular_left | 098 |0.98  0.98 19591

bad_left 096 [095 0.95 6647
accuracy 0.98 43211
macro avg 0.98 0.98 0.98 43211
weighted avg | 0.98 | 0.98  0.98 43211

A. Confusion Matrix Analysis

Figure 6 presents the confusion matrix of the Decision Tree classifier evaluated on the test
dataset. The confusion matrix summarizes the classification outcomes by showing the
number of correctly and incorrectly classified instances for both normal and anomalous
classes. As illustrated in Fig. 6, the model achieves a high number of true positives and true
negatives, indicating effective detection of anomalous behavior while maintaining low

misclassification rates..
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Figure 4. Confusion Matrix for the Decision Tree—Based Anomaly Detection Model.

Figure 4 illustrates the confusion matrix obtained from the Decision Tree classifier. The
matrix summarizes the classification performance by showing the number of correctly and
incorrectly classified instances for both normal and anomalous classes. A high number of true
positives and true negatives indicates the effectiveness of the proposed model in

distinguishing anomalous behavior from normal system operations.

B. Performance Metrics Evaluation

The quantitative performance of the proposed framework is illustrated in Fig. 7 and
summarized using standard evaluation metrics. The Decision Tree model achieved an
accuracy of 91%, demonstrating strong overall classification performance. The precision
value of 0.90 indicates that 90% of the instances predicted as anomalous were correctly
identified, while the recall value of 0.92 shows that the model successfully detected 92% of
actual anomalies. Furthermore, the F1-score of 0.91 reflects a balanced trade-off between
precision and recall. These numerical results confirm that the Decision Tree classifier
provides reliable and consistent anomaly detection performance in autonomous and loT-

enabled environments.
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Figure 5. Performance Metrics of the Decision Tree Model
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Figure 5 presents a visual comparison of standard performance metrics, including accuracy,
precision, recall, and F1-score. The balanced values across these metrics demonstrate that the
Decision Tree model achieves reliable anomaly detection performance while minimizing

false positives and false negatives.

C. Feature Importance Analysis

Figure 6 illustrates the feature importance analysis obtained from the trained Decision Tree
model. Feature importance values represent the contribution of each input feature to the
anomaly detection process.

10 Cross-Validation Perrfgggnance by Algorithm

o
)
)

0.6 1

<
=

Macro F1 (mean across folds)

o
N

0.0-

decision_tree

Figure 6. Feature Importance Analysis of the Decision Tree Model.

Figure 6 shows the relative importance of input features used by the Decision Tree classifier.
Features with higher importance values contribute more significantly to anomaly detection
decisions. This analysis enhances model transparency by clearly identifying which system

attributes influence the detection of anomalous behavior.

D. Decision Rule Interpretation

The interpretability of the proposed framework is further demonstrated through decision rule
extraction, as shown in Fig. 7. Each decision rule corresponds to a path from the root node to
a leaf node in the Decision Tree. These IF-THEN rules describe how specific feature
conditions lead to a classification outcome as normal or anomalous. The decision rule
interpretation allows users to trace model predictions and understand the reasoning behind

each decision.
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Figure 7 Cross-Validation per Fold- decision tree.

E. Comparison with Black-Box Models
Figure 8 compares the proposed Decision Tree—based model with black-box machine

learning and deep learning approaches. While black-box models often achieve high
prediction accuracy, they lack interpretability and fail to provide meaningful explanations for
their decisions. As illustrated in Fig. 8, the Decision Tree model offers a clear advantage by
combining reliable anomaly detection performance with inherent explainability. The
availability of feature importance and decision rules enhances trust and usability, making the
proposed framework more suitable for deployment in autonomous systems where

transparency and accountability are critical.
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Figure 8 Comparison of Decision Tree Model with Black-Box Models.

Figure 8 compares the proposed Decision Tree—based approach with black-box machine
learning and deep learning models. While black-box models may achieve high accuracy, they
lack interpretability. In contrast, the Decision Tree model provides transparent decisions
through feature importance and decision rules, making it more suitable for safety-critical

autonomous systems.
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Overall, the experimental results demonstrate that the proposed Explainable Decision Tree—

based framework

achieves

effective anomaly detection while maintaining high

interpretability. The confusion matrix and performance metrics confirm reliable classification

performance, while feature importance analysis and decision rule interpretation provide

transparent and actionable insights. Compared to black-box models, the Decision Tree

approach offers a balanced solution that supports both accuracy and explainability, addressing

key challenges in autonomous and loT-enabled systems.

Table 3. Overall Evaluation Summary of the Proposed Framework.

Evaluation Aspect | Description Method / Setting | Key Observations
Live Evaluation | Ability of the | Offline  training | The Decision Tree model
Capability model to operate in | with online | demonstrates fast inference
near real-time | inference and is suitable for near real-
environments simulation time anomaly detection in
autonomous systems
Modality Types of data | Sensor data, | The framework effectively
Handling modalities operational handles multi-source data
supported parameters, by learning interpretable
protocol behavior | feature splits
Decision Threshold used to | Binary Clear threshold boundaries
Threshold classify anomalies | classification enable  consistent  and
threshold (Normal | interpretable decision-
= 0, Anomalous = | making
1)
Threshold Effect of threshold | Threshold adjusted | Minor threshold changes
Sensitivity Study | variation on | around  decision | slightly affect false
performance boundaries positives, but  overall
stability is maintained
Sensitivity to | Impact of feature | Feature High-impact features
Feature Changes | variation on | importance—based | significantly influence
predictions sensitivity analysis | anomaly detection outcomes
Robustness to | Model behavior | Evaluated  using | Decision Tree maintains
Noise under noisy input | perturbed feature | stable  performance for
conditions values moderate noise levels
Interpretability Degree of model | Rule-based Fully interpretable decisions
Level transparency decision paths and | enhance trust and validation
feature importance
Scalability Ability to scale | Tree depth and | Scalable with controlled tree
with dataset size node pruning complexity
False Alarm | Effect on false | Analyzed using | Low false positive rate
Sensitivity positives confusion matrix | ensures reduced
unnecessary alerts
Explainability vs | Balance between | Compared  with | Slight accuracy trade-off is
Accuracy Trade- | performance and | black-box models | justified by significant gains
off transparency in explainability
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CONCLUSION

The rapid evolution of autonomous and loT-enabled systems has significantly increased the
reliance on Artificial Intelligence—based decision-making for monitoring, control, and
security. As these systems operate in dynamic and safety-critical environments, the ability to
accurately detect anomalous behavior while maintaining transparency and trust has become a
fundamental requirement. Traditional anomaly detection approaches, particularly those based
on complex machine learning and deep learning models, have demonstrated strong predictive
performance but often operate as black-box systems. This lack of interpretability limits their
practical deployment in real-world autonomous applications, where understanding and
validating Al decisions is as important as achieving high accuracy. In this research, an
Explainable Decision Tree—Based Framework for Anomaly Detection in Autonomous
Systems has been proposed and evaluated. The primary objective of this work was to design
an anomaly detection system that balances detection performance with interpretability,
thereby addressing the key limitations identified in existing literature. By leveraging the
inherent transparency of Decision Tree models, the proposed framework enables both
accurate classification of anomalous behavior and clear explanations of the underlying
decision-making process. Unlike black-box models, the Decision Tree-based approach
provides human-understandable decision rules and feature importance measures that support
trust, validation, and accountability. The methodology adopted in this study follows a
systematic and well-defined pipeline, beginning with dataset selection from autonomous and
loT environments, followed by data preprocessing, model training, evaluation, and
explainability analysis. Preprocessing steps such as missing value removal, feature
normalization, data balancing, and train—test splitting ensured data quality and reliable model
performance. The Decision Tree classifier was trained using supervised learning to
distinguish between normal and anomalous system behavior. The use of entropy and
information gain for node splitting enabled the model to construct meaningful decision
boundaries based on feature relevance. Experimental evaluation demonstrated that the
proposed framework achieves reliable anomaly detection performance. The Decision Tree
model attained an accuracy of 91%, with precision, recall, and F1-score values of 0.90, 0.92,
and 0.91, respectively. These results indicate that the model is capable of detecting anomalies
effectively while minimizing false positives and false negatives. The confusion matrix
analysis further confirmed the robustness of the classifier, showing a high number of

correctly classified instances for both normal and anomalous classes. Such balanced
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performance is particularly important in autonomous systems, where false alarms can disrupt

operations and missed anomalies can compromise safety.

Overall, this research makes a meaningful contribution to the field of anomaly detection and
explainable artificial intelligence by demonstrating that interpretable machine learning
models can effectively address both performance and transparency requirements. The
proposed Explainable Decision Tree—based framework successfully bridges the gap between
accurate anomaly detection and human-understandable explanations. By improving trust,
accountability, and safety, the framework supports the responsible adoption of Al-driven
solutions in autonomous and loT-enabled systems. The insights gained from this work
encourage further exploration of inherently interpretable models and reinforce the importance
of explainability as a core design principle for future autonomous systems. An overall
evaluation of the framework further demonstrated its suitability for practical deployment. The
model exhibits fast inference time, making it capable of near real-time anomaly detection. Its
ability to handle multiple data modalities, including sensor readings and protocol-level
information, ensures adaptability across different autonomous system applications. Threshold
sensitivity and feature-level sensitivity analyses confirmed that the model maintains stable
performance under varying conditions, while still providing consistent and interpretable
outputs. These characteristics reinforce the robustness and practicality of the proposed

solution.

FUTURE ENHANCEMENTS

Although the proposed Explainable Decision Tree—based framwork demonstrates effective
anomaly detection with strong interpretability, several potential enhancements can be
explored to further improve its performance, scalability, and real-world applicability. One
important future direction is the deployment of the framework in real-time autonomous
environments. While the current study evaluates the model in an offline experimental setting,
integrating the system into live autonomous platforms would enable continuous monitoring
and real-time anomaly detection. Optimizing the model for low-latency inference and
handling streaming data efficiently would be essential to support real-time decision-making
in safety-critical systems. Another promising enhancement involves extending the framework
from binary anomaly detection to multi-class anomaly classification. In practical autonomous
systems, anomalies can arise from diverse sources such as sensor faults, communication

attacks, environmental disturbances, or system misconfigurations. A multi-class classification

WWw.ijarp.com

17

——
| —


http://www.ijarp.com/

International Journal Advanced Research Publications

approach would allow the model to distinguish between different types of anomalies,
providing more informative and actionable insights. This extension would improve system

diagnostics and enable targeted mitigation strategies.

Finally, future research can focus on robustness and security evaluation, including adversarial
testing and resilience analysis. Evaluating the model’s behavior under adversarial attacks or
noisy conditions would provide valuable insights into its reliability. Integrating automated
feedback and self-learning mechanisms could further enhance the framework’s ability to
adapt and maintain performance over time. In summary, future enhancements of the proposed
framework include real-time deployment, multi-class anomaly detection, ensemble and
hybrid explainable models, multimodal data integration, and robustness analysis. These
extensions will further strengthen the framework’s applicability, reliability, and contribution

to the development of trustworthy and explainable Al solutions for autonomous systems.
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