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ABSTRACT 

This paper presents a graph structural approach to the study of maximal antichain graphs 

and their potential applications in combinatorial optimization. The concept of maximal 

antichains, derived from partially ordered sets (posets), provides a rich framework for 

constructing graphs that exhibit unique connectivity, dominance and covering proper- 

ties. The results reveal that maximal antichain graphs possess higher level of structural 

efficiency and minimal redundancy making them prominent for optimization processes 

that require balance between connectivity and independence. The paper further explore 

how the structural characteristics of these graphs such as degree distribution, chromatic 

number and clique structure can be utilized to model and solve optimization problems. 

Furthermore the paper provides valuable insight into the study of combinatorial be- 

haviours of maximal antichains graphs. 

 

KEYWORDS: graph theory, maximal antichain graphs, combinatorial optimization, 

posets. 

 

INTRODUCTION 

Graph theory is a cornerstone of modern mathematics, offering a versatile framework to 

model relationships between entities in diverse fields such as computer science, operations 

research, and network analysis. A graph G = (V, E) consists of a vertex set V representing 

entities and an edge set E representing pairwise connections. Within graph theory, the 

concept of partially ordered sets (posets) provides a structured way to study orderings 

derived from graphs, such as vertex reachability or subgraph inclusion. 
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A poset is a set equipped with a binary relation that is reflexive, antisymmetric, and 

transitive. In this context, an antichain is a subset of elements where no two elements are 

comparable under the partial order, meaning neither element precedes the other. A 

maximal antichain is an antichain that cannot be extended by including additional 

elements without violating the incomparability condition. In graphs, maximal antichains 

manifest in various forms, such as independent sets in comparability graphs or sets of 

non-nested subgraphs in a poset of subgraphs ordered by inclusion. 

 

The study of maximal antichains is deeply rooted in combinatorial mathematics, with key 

results like Dilworth’s theorem. This theorem has profound implications for graph 

structures, enabling applications in optimization and scheduling. Maximal antichains 

have practical significance in areas such as task scheduling, where they identify sets of 

non-conflicting tasks that can be executed simultaneously, and network design, where 

they model independent nodes or resources. 

 

In Nigeria, with its growing technological and industrial sectors, such concepts can address 

challenges like optimizing telecommunications networks or managing resource allocation in 

agriculture and logistics, aligning with the career aspirations of mathematics graduates 

seeking to apply theoretical knowledge practically. 

 

Definition of Some Basic Terms 

Definition 1.1: Graph A graph is a mathematical structure denoted by G = (V, E), 

where V is a set of vertices and E ⊆ V × V is a set of edges. 

Definition 1.2: Partially Ordered Set (Poset) A partially ordered set (poset) is 

a set equipped with a binary relation that is reflexive, antisymmetric, and transitive. 

Definition 1.3: Chain A chain is a subset of elements in which every pair of 

elements is comparable under the partial order. 

Definition 1.4: Antichain An antichain is a subset of a poset in which no two elements 

are comparable under the partial order. 

Definition 1.5: Maximal Antichain A maximal antichain is an antichain that cannot 

be extended by adding another element without violating incomparability. 

Definition 1.6: Dilworth’s Theorem In any finite poset, the size of the largest an- 

tichain is equal to the minimum number of chains needed to partition the poset. 

Definition 1.7: Comparability Graph A comparability graph is a graph in which 

http://www.ijarp.com/
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the vertices represent the elements of a poset, and edges connect pairs of comparable 

elements. 

Definition 1.8: Independent Set An independent set is a set of vertices in a graph 

such that no two vertices in the set are adjacent. 

Definition 1.9: Clique A clique is a subset of vertices in a graph such that every 

pair of vertices in the subset is adjacent. 

Definition 1.10: Combinatorial Optimization Combinatorial optimization is a 

field of mathematics and computer science that seeks to find an optimal object (e.g., 

maximum independent set, minimum vertex cover, shortest path, etc.) in a finite but 

often exponentially large collection of feasible objects. 

 

Methodology 

In this chapter, the research considers the formation of maximal antichain graphs and 

their applications in combinatorial optimization. 

It begins as follows: Let the set of real numbers R with the usual order relation be (≤), 

and let the set of subsets of a given set S, the power set of S, be denoted by P(S) with the 

subset relation (⊆). 

 

Bipartite Graph Representation 

Let a bipartite graph be represented by U and V such that 

U = {U1, U2, U3}, V = {V1, V2, V3, V4} 

and the set of edges is given by: 

E = {(U1, V1), (U1, V2), (U2, V1), (U3, V2), (U3, V3)}. 

The neighborhood of the vertices in U is defined as: 

N (U1) = {V1, V2}, 

N (U2) = {V1}, 

N (U3) = {V2, V3}. 

Hence, the maximal antichain is given by: 

N (U3) ≤ N (U2) ≤ N (U1). 

http://www.ijarp.com/
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Figure 1: Bipartite graph representation showing neighborhood sets N (U1), N (U2), 

and N (U3). 

 

1.1 Path Graph P4 

Let the vertices be {V1, V2, V3, V4} and the edges be 

E = {(V1, V2), (V2, V3), (V3, V4)}. 

The bipartition divides the vertices into two sets: 

U = {V1, V3}, V = {V2, V4}. 

The path graph P4 is bipartite because the vertices can be alternated between two sets 

such that no edges connect vertices within the same set. 

 

Example 3.3: Adjacency Matrix 

 

Figure 3.2: Path Graph P4 

 

1.2 Boolean Lattice 

The power set of an n-element set ordered by inclusion forms a Boolean lattice.  By 

Sperner’s theorem, the largest antichain is the set of all subsets of size ⌊n/2⌋. 

For n = 4, the subsets of size 2 form a maximal antichain: 

http://www.ijarp.com/
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{1} {1, 2} 
{1, 3}{1, 2, 3} 

∅ {2} 
{3} {2, 3} 

{a, b} 

{a} {b} 

∅ 

A = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}. 

Example 3.4: Power Set of a Three-Element Set Let S = {1, 2, 3}. Then 2S = 

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. 

Operations: 

A ∩ B (Meet), A ∪ B (Join),S \ A (Complement). 

Examples of Operations: 

{1, 2} ∩ {1, 3} = {1}, {1} ∪ {2} = {1, 2}, S \ {1, 2} = {3}. 

This forms a Boolean lattice with 23 = 8 elements, represented as a three-dimensional 

cube structure. 

Figure 3.3: Boolean Lattice B3 

 

Boolean Lattice of Two Elements Let S = {a, b}. Then 

P (S) = {∅, {a}, {b}, {a, b}}. 

Ordered by inclusion, the maximal antichain is {{a}, {b}}, since no two of these 

are comparable, and every other element is comparable to at least one of them. 

Figure 3.4: Boolean Lattice B2 

 

1.3 Products of Chains 

Consider the poset formed by the product of two chains {1 < 2} and {a < b} with the 

component-wise order: 

 

http://www.ijarp.com/
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1.3 The Power Set of a 3-Element Set 

Let S = {a, b, c}. The power set P(S) ordered by ⊆. One maximal antichain is the set 

of all 2-element subsets: 

 

 

1.4 The Chain Poset C3 

A chain poset with three elements implies {a, b, c} where a < b < c. 

 

 

A maximal antichain example is {b}, which is a single node. 

 

1.5 The Divisibility Poset on {1, 2, 3, 6} 

Let us consider the set {1, 2, 3, 6} with partial order defined by divisibility, i.e., 

a ≤ b if a divides b. 

http://www.ijarp.com/
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1.6 The Product Poset {1, 2} × {1, 2} 

The poset is the Cartesian product: 

 

 

1.7 The Crown Poset C6 

The crown poset on six elements, say {a1, a2, a3, b1, b2, b3}, where the order is defined such 

that ai < bj for i ̸= j. Incomparable pairs include all ai’s among themselves and all bi’s 

among themselves. The set {a1, a2, a3} or {b1, b2, b3} is a maximal antichain. 

 

 

 

Theorem 2.1: Clem and West (2018) 

In the Boolean lattice Bn of all subsets of [n] ordered by inclusion, the largest antichain 

http://www.ijarp.com/
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⌊n/2⌋ 

⌊n/2⌋ 

⌊n/2⌋ 

  

(Sperner family) has size
  n  

. 

Proof: Each chain in Bn intersects each layer (subsets of size k) in at most one element. 

There are n + 1 layers (from size 0 to n). By Dilworth’s Theorem, the width is the 

size of the largest layer, which is
  n  

. 

 

Theorem 2.2: Zhang et.al (2023) 

In any finite poset P , the size of the largest chain is equal to the smallest number of 

antichains needed to cover all elements of P 

Proof: This is the dual of Dilworth’s Theorem. Assign levels to elements based on chain 

lengths, and each level forms an antichain. The number of levels equals the length of the 

largest chain. 

 

3.0 RESULTS AND DISCUSSION 

Proposition 3.1. 

The width W (P ) of a poset P (the size of its largest antichain) is equal to the size of the 

largest set of mutually incomparable vertices in the associated comparability graph. 

Proof: The comparability graph of P connects elements that are comparable in P . 

Hence, an antichain corresponds to an independent set in the graph. The largest an- 

tichain corresponds to the largest independent set, establishing W (P ) as the indepen- 

dence number of the comparability graph. 

Proposition 3.2. 

In the Boolean lattice Bn of all subsets of [n] = {1, 2, . . . , n} ordered by inclusion, the an- 

tichains are called Sperner families. The family of all subsets of size k forms an antichain, 

and the largest such antichain has size 

n 

⌊n/2⌋ 
. 

Proof: Two subsets of [n] of equal size are incomparable under inclusion. The largest 

layer in Bn consists of subsets of size ⌊n/2⌋, whose number is
  n  

. Hence, this forms 

the largest antichain, also known as a Sperner family. 

Proposition 3.3. 

In a bipartite poset P = A ∪ B, if there exists a maximal antichain matching of size 

k, that is, a set of k pairwise incomparable pairs (ai, bi), then the interval dimension 

Idim(P ) ≤ k. 

  

http://www.ijarp.com/
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Proof: Each incomparable pair (ai, bi) defines an interval order whose realization con- 

tributes to bounding the interval dimension. Since k such pairs suffice to cover all incom- 

parabilities, the interval dimension of P is at most k. 

 

Lemma 3.1 

Every finite poset P can be partitioned into layers of maximal antichains A1, A2, . . . , Ak 

such that if x ∈ Ai and y ∈ Aj with i < j, then x < y in the poset. 

Proof: Construct each layer by repeatedly removing maximal antichains from the poset. 

This guarantees comparability direction from lower to higher layers. 

 

Theorem 3.1 

In any finite poset derived from a graph G, the size of the largest antichain is equal to 

the minimum number of chains that partition the poset. 

Proof: Let A be the largest antichain. Suppose there exists a chain partition with fewer 

chains than |A|, then some chains must contain two elements of A, which contradicts the 

definition of an antichain. No two elements in an antichain are comparable, and elements in 

a chain are comparable. 

Thus, any chain partition must have at least k chains. Now we show that there exists a 

chain partition with exactly k chains. Hence, the minimum number of chains is equal to 

the size of the largest antichain. 

 

4.0 CONCLUSION 

This research advances the mathematical understanding of maximal antichains and their 

role in combinatorial optimization. By bridging theoretical graph theory with practical 

applications, the study offers valuable insights for mathematicians, contributing to the 

growing body of knowledge in discrete mathematics and optimization theory. 
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