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ABSTRACT 

Predictive maintenance (PdM) has completely changed the way industries are operated from 

a reactive and preventive mind set to real-time, data-driven, and condition-based decision-

making for maintenance activities. As a result of the continuous capture of condition data 

leading to signal processing and artificial intelligence (AI) being utilized for maintenance, 

this can reduce downtime by enabling maintenance of equipment before catastrophic failure 

and simultaneously improve reliability and lower costs. This paper reviews the development 

of PdM technologies and practices over time, tracing a path from more traditional, adaptive 

statistical and signal analysis practices, advancing to and including more recent developments 

in machine learning, and deep learning algorithms. We compare the various approaches based 

on performance criteria such as accuracy, scalability, ease of understanding, and cost of 

implementation and describe the pros and cons of each approach when used with different 

industrial applications. In addition, we discuss an emerging scheme regarding explainable AI 

(XAI) and causal discovery which addresses the challenge of trust,  and transparency with 

approaches employing black-box models that is critical in situations where safety is 

paramount. We also describe the usefulness of new paradigms, such as data categorization 

approaches, multimodal data fusion, edge and federated learning, and quantum computing, 

for enhancing scalability and real-time deployment. By collecting existing applications and 

examining positives and negatives, applicable principles, and main trade-offs to usability 

outcomes, we have noted areas of research that are lacking, such as understanding 

interpretability to the PdM system created by the data utilized, availability of data-based 
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information, and deployment, which allows us to create next steps for developing PdM 

systems that are accurate, interpretable, and scalable within the Industry 4.0 space. 

 

INDEXTERMS: About four key words or phrases, in alphabetical order, separated by 

commas, with only the first index term capitalized. All terms following the initial term should 

be lowercase unless they are proper nouns, in which case they should have an initial cap. 

 

INTRODUCTION 

Predictive maintenance (PdM) is emerging as a common theme of today’s industrial activities 

and changing the framework of maintenance from reactive and planned maintenance to data-

driven, and condition-based maintenance 1 2. Given the rise in complexity and 

interconnectedness of industrial systems, the consequences of unplanned equipment failures 

are particularly costly to industry, with unplanned downtime costing the manufacturing 

industry billions annually 3,4. Thus, the transition from corrective maintenance of an asset, 

conducted after a failure, and preventive maintenance that performs maintenance tasks 

regardless of the asset's operating condition, to predictive maintenance, is grounded in better 

optimization of maintenance activities based on the real-time condition of equipment health, 

performance measures, and metrics. The concept of predictive maintenance is to give 

maintenance teams the ability to foresee equipment failure prior to its occurrence, potentially 

allowing maintenance practitioners to conduct a maintenance activity during a planned 

downtime, incur a lower maintenance cost, extend the life of the asset, and ultimately 

increase performance objectives5,6. Because predictive maintenance is developed from 

continuous monitoring of dynamic parameters of an asset, operational condition and state of 

the process and equipment conditions, and records of past maintenance activities, 

environmental and prognostic conditions, predictive maintenance is based on the 

development of specific description models related to operational performance behaviour and 

specific degradation models for the physical asset condition 7. 

 

The performance of predictive maintenance methods is fundamentally relational to the 

quality and interpretability of the models 89. While classical statistical models might provide 

fundamental insights into equipment actions, they are unlikely to characterize the nonlinear, 

complex relationships that exist in an industrial setting 10. Industrial processes both include 

and surround us with a variety of data most prominently including time-series sensor data, 

categorical operational parameters, maintenance logs, or environmental parameters11. 

Moreover, the dynamic character of industrial processes creates temporal dependencies, and 
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aging mechanisms which would ask for advanced modelling techniques in order to respond to 

those changing conditions. 

The presence of multiple, simultaneous degradation processes (with varied failure 

mechanisms and timescales) adds to the complexity of predictive maintenance. Failures are 

often driven by complex interdependencies across multiple parameters which requires an 

understanding not only of the relevant failure predictive parameters, but how those relevant 

parameters interact with each other and exert influences over time. The ever-increasing 

volume and velocity of industrial data being realized from the widespread introduction of IoT 

sensors, and Industry 4.0 initiatives, opens-up both a challenge and an opportunity in relation 

to the implementation of predictive maintenance1213. Access to high resolution, multi-

dimensional data can provide unprecedented insights into the performance of equipment, yet 

the complexity of the data will require an analytic approach that can find meaningful patterns 

while still supporting computational efficiency and practical application 14. 

 

ARTIFICIAL INTELLIGENCE AS A TRANSFORMATIVE FORCE IN PREDICTIVE MAINTENANCE 

The use of artificial intelligence (AI) for predictive maintenance demonstrates a very 

significant improvement leading to better, more accurate, reliable and actionable predictions 

of failure1516. Scheduling predictive maintenance is mainly based on the use of machine 

learning (ML) algorithms, which practitioners love, based on their ability to identify 

automatically complex nonlinear patterns in high-dimensional feature spaces and adapt to 

changing operating conditions; both of which have been one of the significant weaknesses of 

statistical algorithms17. In addition to traditional models, deep neural network architectures 

such as convolutional neural networks for spatial and spectral feature extraction from sensor 

signals, and recurrent neural networks for representing temporal dependencies, have been 

shown to increase performance capturing complex relationships between different operational 

parameters and indicators of equipment health18, 19]. Furthermore, deep learning 

architectures and ML algorithms have been verified for their ability to capture the nonlinear, 

time-dependent nature of degradation processes, and effectively accommodate the vast and 

diverse volumetric data types typically generated in industrial environments (e.g., vibration, 

acoustic, thermal, and image) [20]. Advanced algorithms, such as ensemble models, and 

advanced ML algorithms, not only leverage predictions from multiple ML algorithms, along 

with an uncertainty quantification, to increase the predictive reliability of diagnostic models, 

they also enable AI models to dynamically act live and learn continuously from streaming 

data, which leads to more adaptive and responsive predictive maintenance strategies. 
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Regardless of these advancements, there are major issues to face in adopting it on an 

industrial level. The sophistication of modern AI models, particularly deep learning models, 

can lead to systems that are "black boxes" which have models that give highly accurate 

predictions but limited explainability, making it difficult for people in the field to understand 

how recommendations for maintenance were reached [21], [22]. The lack of transparency 

presents challenges in safety critical industries for explaining decisions and actions [23], [24] 

to support operator trust in the operation of their systems. Safety critical industries, where 

people depend on the safety and performance of systems, require an understanding of how 

the model arrived at results to maintain trust and implement proper procedures (for projects 

with regulatory oversight) while making informed decisions. Addressing all necessary 

challenges to deployment of more modern AI models will not only require innovations in 

explainable AI but also consideration of deployment issues, i.e. computer cost, data access, 

how to combine the AI with human workflows, and providing proper training of human 

operators to use AI. 

 

OVERVIEW OF PREDICTIVE MAINTENANCE TECHNOLOGIES 

Predictive maintenance involves the use of data-driven approaches and algorithms to predict 

equipment failures and improve maintenance. Predictive maintenance's technologies involve 

data acquisition, data preparation, failure prediction, and maintenance optimization, and have 

evolved over the years through advances in sensors, computing, and analytics. The adoption 

of predictive maintenance solutions is contingent on the type of equipment, the modes of 

failure for the equipment, availability of data, computational demands, and interpretability. It 

takes careful design of effective frameworks to balance the strengths and weaknesses of these 

technologies to provide valid and actionable information within the constraints known for 

industrial resources. Time-domain analysis is one of the foundational methods for processing 

equipment performance data, focusing on how signals change over time.  Time-domain 

analysis is beneficial for the identification of transient events, to analyse trends, and to 

capture the evolution of equipment health indicators over time [25]. 

  

Statistical time-domain features allow the foundation of a predictive maintenance system, as 

these features provide quantifiable and statistical measures of the signal characteristics, which 

can be indicative of the condition of the equipment. Root Mean Square (RMS) values are 

useful as a proxy for overall vibration energy and as a particularly sensitive indicator of the 

presence of developing faults in rotating machines [7]. Peak values and crest factors indicate 
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the presence of impulsive events indicative of bearing failure or gear tooth damage.  The 

measurements for skewness and kurtosis define the statistical nature of the signal amplitudes, 

with significant deviations from normal being indicative of faulty conditions [26].Trend 

Analysis Methods emphasize discovering differences over a prolonged time period in the 

behaviour of equipment that would reflect long-term degradation. Moving averages and 

exponential smoothing methods provide filtering of short-term variability while preserving 

the trends indicated of the health evolution of the equipment. Regression analysis and curve 

fitting methods are appropriate to quantify equipment degradation and extrapolate trending 

behaviours into future state predictions [27]. 

Autoregressive and Time Series Models offers more advanced methods for capturing the 

temporal dependency behaviour of monitoring data of the equipment. The AR, MA, and 

ARMA methods have been shown to represent the underlying stochastic processes of 

equipment behaviour and could help identify an anomaly as a deviation from expected 

temporal behaviour [28]. These different approaches provide a means of being more sensitive 

to the dynamic behaviour of equipment responses and may lead to prior identification of 

subtle changes in behaviour that precede failure. 

Frequency-Domain Analysis Frequency-domain analysis converts time-domain signals into 

their frequency components, and may provide spectral features that are more directly 

connected to fault mechanisms than time-domain features. This forms the basis of many 

predictive maintenance strategies, especially for rotating machinery where various fault types 

create frequency-based signatures [29].  

Fast Fourier Transform (FFT) analysis is the most commonly used method in predictive 

maintenance in that it converts time domain signals into their frequency based components, 

allowing the analyst to isolate frequency peaks associated with particular phenomena, such as 

shaft speed, meshing gear frequency, or bearing element passing frequency [30]. Power 

spectral density measures based on FFT analysis will provide the quantitative measure of 

energy pass-through in frequency bins and can be used for the detection of incipient faults 

through observation of changes in spectral features.  

Advanced Spectral Analysis Methods allow us to go beyond merely conducting an FFT 

analysis, providing improved resolution and fault characterization. Welch's power spectral 

density estimation produces more reliable spectrum estimates for noisy industrial signals by 

segmenting a signal into shorter segments, estimating, and then averaging [31]. Parametric 

spectral estimation methods, such as autoregressive spectral analysis, can provide better 
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frequency resolution when analysing limited length data. These are particularly useful when 

analysing transient phenomena or taking measurements over a short time scale. 

Envelope Analysis and Demodulation Techniques are specialized frequency domain methods. 

They tend to show strengths when identifying bearing and gear faults, where fault-related 

impulses can be modulated onto a higher frequency signal from the bearing's resonance 

characteristic. This approach is often comprised of a band-pass filter for the high frequency 

components of our signal, followed by envelope detection and spectral analysis of the 

envelope signal [32]. 

Time-Frequency Analysis methods provide an essential link between time-domain and 

frequency-domain methods by providing information about the time occurrence of signal 

components alongside their frequency content. Time-frequency methods are particularly 

useful when signals are non-stationary and, therefore, their frequency content evolves over 

time. This is a common characteristic of industrial applications characterized by dynamic 

operating conditions or transient fault scenarios [33]. 

Short-Time Fourier Transform (STFT) is the most basic form of time-frequency analysis and 

involves performing the Fourier transform over a short and overlapping time window in order 

to observe the trend in frequency content over time [34]. STFT is most useful for analysing 

signals with slowly evolving frequency content and typically provides a reasonable 

compromise between temporal and frequency resolution. Nevertheless, STFT has a typical 

and prominent application in predictive maintenance scenarios when the monitored 

machinery operates at various speeds, or when the faults evolve with time. 

Wavelet Transform Analysis Compared to the STFT, wavelet transform analysis has better 

time-frequency resolutions, especially when examining signals that contain both transient 

occurrences and steady-state components [35]. The continuous wavelet transform (CWT) is 

great for high-frequency component detection due to high-resolution time properties, and it 

can identify low-frequency components with good frequency resolution. The CWT is also 

particularly useful for detecting impulsive fault signatures, such as impacts generated by 

faulted bearings or damaged gear teeth. Discrete wavelet transforms (DWT) can break down 

signals efficiently into the frequency bands of interest via multiresolution analysis and help 

extract fault related features from complex signals in a range of frequency bands [36]. 

Advanced time-frequency methods include the Winger-Ville distribution, the Hilbert-Huang 

transform, and empirical mode decomposition for their individual capabilities and 

effectiveness at solving specific types of analysis challenges. The Hilbert-Huang transform 

combines empirical mode decomposition and Hilbert spectral analysis to provide a detailed 
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analysis of nonlinear and non-stationary signals without the need for a priori basis functions 

[37]. Finally, these advanced methods have begun theoretical expansions and applications 

into the analysis of complex industrial signals when analysis results based on traditional 

techniques are insufficient. 

The increasing interest in Explainable Artificial Intelligence (XAI) to support predictive 

maintenance is driven by operational and regulatory requirements [38]. In other words, 

increasingly, industrial operators and practitioners want to attain not just predictive accuracy, 

but insight into the prediction: why a particular failure is predicted, which parameters matter 

most regarding health or wellbeing of the equipment, and if operational conditions were to 

change, to what extent would it influence risk [39]. XAI is especially necessary in industries 

with a high public safety consequence, which are heavily regulated, as maintenance plans, 

inferences, or recommendations are required to be justified, auditable, and compliant with 

regulatory bodies [40]. Traditional XAI methods only partially facilitate explainability; 

feature importance analysis or local interpretation methods partially explain model 

representation and notion but do not typically or deeply provide insights about causality [41]. 

It is vital to know which variables and parameters are actively degrading the health or 

degrading the equipment, rather than simply knowing there is a correlation for events 

resulting in failures; and this information is essential for preventive maintenance to act on 

root causes rather than symptoms [42], [43]. 

To address these challenges, causal discovery has a growing presence as a promising 

approach for predictive maintenance. Causal discovery, by using approaches that model 

causal structures from observational data, overcomes the limitations of causal reasoning 

based on correlation, and also provides insight into the causes of equipment behaviour and 

failure [44], [45], [46]. In addition to being an alternative source of robustness and 

generalizability for predictive models, causal discovery will also provide more actionable 

information as to how maintenance decisions can connect back to the actual causes of the 

degradation of equipment [47]. Recent work has uncovered the potential for causal discovery 

and causal inference to be leveraged together alongside XAI in developing predictive 

maintenance systems that are valid with modern AI while using the explanations of causal 

inference [48], [49]. All in all, this synergistic approach provides an opportunity to develop 

maintenance frameworks that are valid, interpretable, trustworthy, and fundamentally linked 

to the causal mechanisms of equipment failures [50]. 
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COMPREHENSIVE METHOD COMPARISON ANALYSIS 

1. Core Machine Learning Algorithms 

Core ML algorithms exhibit trade-offs between performance, scalability, interpretability, and 

computational complexity. Random Forest [51] exhibits strong accuracy and can handle 

missing data, but takes up a lot of memory space and is not very interpretable.  XGBoost [52] 

gives good prediction performance and scalability and handles missing data and cross-

validation well, but needs delicate tuning of hyper-parameters and much more interpretation 

difficulty. Deep learning with CNNs [53], provides accuracy in image, signal, and pattern 

recognition but needs a large dataset, is computationally intensive, and like many deep 

learning approaches, can be considered "black-box" approaches. DBSCAN [54] provides 

interpretable and low-complexity clustering methods useful for anomaly detection while not 

requiring pre-defined clusters, however, DBSCAN can be quite sensitive to density and 

parameter selections. Overall, no single method dominates all criteria; deep learning suits 

high-dimensional, unstructured data, while Random Forest and XGBoost balance 

interpretability and scalability for structured data. 

2. Predictive Maintenance Methods 

Different predictive maintenance methods vary in accuracy, resource needs, and value trade-

offs. A traditional statistical method, like an ARMA model, is relatively easy (days–weeks) 

and fast to implement, achieves medium accuracy (75%–85%), and has limited cost savings 

when put into practice. Machine Learning (ML) methods, on the other hand, achieve 

medium-high accuracy (85%–95%) and potential cost savings of 25%–40% by using multi-

modal data, but require a longer timeframe to implement, larger data sets, and feature 

engineering [2]. Deep Learning (DL) methods yield the greatest accuracy (90%–98%) and 

would also create the highest possible cost savings (35%–50%) in large industrial settings, 

however they require high quality data, extensive compute, longer implementation times, and 

often have reduced or lacking interpretability [20]. The trade-off is that statistical methods are 

faster and easy to interpret, ML methods are better than statistical methods and make some 

trade-offs on interpretability and resource use, and DL methods give the best predictive 

quality but worse resource use and interpretability. Traditional signal analyses still have a 

place for use with monitoring vibrations and acoustics because of their ease of use and speed 

of implementation, but they cannot provide the predictive capabilities of ML or DL[29]. 

3. Explainable AI (XAI) Methods 

Popular Explainable AI (XAI) methods differ in scope, computational cost, and reliability, 

each with trade-offs. LIME [21] offers local approximations of black-box models with low 
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computational cost but shows medium reliability due to instability across runs. SHAP [55] 

extends this approach for local and global interpretability using cooperative game theory 

principles; it is more computationally expensive but highly reliable and widely used in 

sensitive domains like finance and healthcare. Attention-based mechanisms provide global 

interpretability within deep learning models, balancing efficiency and usability, though 

reliability depends on model complexity [56]. Rule-based methods provide readily 

interpretable explanations across the globe, especially through decision trees or expert 

systems; however, they typically apply to simpler and narrower domains [57]. Gradient-based 

methods produce local explanations for neural networks in an efficient manner, though they 

may lack reliability [58]. Ultimately, the choice of an XAI method will require a trade-off 

between interpretability, generalizability, and computational expense of the method.  

4. Multi-modal and Fusion Methods 

Early fusion methods involve filtering and fusing together several raw or low-level features 

into a single representation prior to model training. These methods maintain maximum 

amounts of available information with low computational cost; however, they can also 

remain sensitive to noise or modality failures. Early fusion methods provide simplicity and 

efficiency of the applied processing when compared to separate models. Applicability of 

early fusion approaches range, among others, to the domains of audio-visual emotion 

recognition [59] or speech processing [59]. Late fusion is a method combining the output 

from separate models trained on pre-extracted features. This method ensures reliability 

through cross-validation, and offers moderate computational requirements, at the expense of 

lower amounts of raw information. In education the late fusion approach has been applied to 

multimedia retrieval [60] and healthcare diagnostics [60]. Hybrid fusion employs both a 

filtering step and a late fusion filtered decision from the individually trained models. Hybrid 

approaches afford the ability to maintain higher amounts of available information but at a 

greater computational cost, and require greater synchronization in analysis methods. While 

more expensive to implement, hybrid analysis methods can have utility in complicated 

domains like autonomous driving or medical imaging [61]. 

  

DISCUSSION 

Decision-making and predictive analytics can involve many different methods, each with 

their own strengths and trade-offs depending on the goals of the analysis. The use of 

traditional statistical models such as ARMA lends itself to quick implementation, includes an 

easier use, and offers the stated results above 50% accuracy. They can be good for low data 
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solutions  [11], [29]. Compared to traditional statistical methods, machine learning (ML) 

leverages the use of multi-modal data to achieve a more significant accuracy potential. 

Within the family of ML models, different considerations such as feature engineering and 

large datasets may hinder performance outcomes. Deep learning (DL) attain a high level of 

performance, with increased accuracy, efficiency, and cost savings at scale; DL models may 

sacrifice speed, resource intensity, and/or interpretability along the way. Unlike deep 

learning, CNNs leverage a significant portion of their power from the identification of spatial 

features (with diagnostic information encoded).And clustering methods of unsupervised 

learning, such as DBSCAN, remain relevant and applicable while offering strong 

interpretability [62], [53], [54], [2], [20]. In a complementary way, edge computer gives rise 

to new avenues of real-time operational analytics through model compression and federated 

(edge) learning frameworks [63], [64], [65]. Quantum computing also offers promise of 

application within the predictive maintenance framework through their capabilities related to 

optimization or advanced ML methods [66], [67]. To manage related issues of transparency, 

many XAI (explainable AI) methods perform analysis through additives from or in 

concurrence to black box methods. These models vary in levels of interpretability, cost, and 

reliability; with examples such as LIME, SHAP, attention mechanisms, and rule-based 

systems [21], [55], [56], [57]. 

In the end, multimodal fusion methods combine different data sources: early fusion offers 

high information and low robustness, late fusion improves reliability of decision but with 

moderate complexity, and hybrid fusion gains the best of both methods at a high computation 

cost especially within autonomous vehicles or medical imaging [59], [60], [61]. 

 

CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

Predictive maintenance (PdM) has evolved from simple time-series models to advanced AI 

systems capable of learning complex patterns from multimodal industrial data. Although 

traditional statistical methods retain their appeal owing to their simplicity and interpretability 

compared to ML and DL, which, although typically yield superior prediction accuracy in 

exchange for a reduced interpretability and greater computational cost. Effective explainable 

AI and causal discovery contribute significantly to enhancing the trustworthiness associated 

with making consequently significant PdM interventions. The rapid developments in 

multimodal fusion, edge and federated learning, and quantum optimization are anticipated to 

contribute further to enhancements in scalability, latency, and adaptability thereby 

constituting intelligent, explicable, and resilient Industry 4.0 maintenance ecosystems.    

http://www.ijarp.com/


                                                                                   International Journal Advanced Research Publications 

 

 

www.ijarp.com                                                                                                  
11 

The widespread adoption of IoT has increased the interest in edge analytics, offering the 

potential to minimize latency, afford savings in the use of bandwidth and will drive 

improvements in reliability. Edge AI enables inference to be undertaken in real-time through 

the use of lightweight models accompanied by techniques such as pruning and knowledge 

distillation. Federated learning enables a collaborative approach to model training between 

different distributed sites, while protecting owner privacy. Quantum computing, including 

quantum machine learning and optimization, may further enhance pattern recognition, 

scheduling, and resource allocation in complex industrial systems, complementing edge and 

distributed AI approaches for next-generation predictive maintenance. 
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