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ABSTRACT

Predictive maintenance (PdM) has completely changed the way industries are operated from
a reactive and preventive mind set to real-time, data-driven, and condition-based decision-
making for maintenance activities. As a result of the continuous capture of condition data
leading to signal processing and artificial intelligence (Al) being utilized for maintenance,
this can reduce downtime by enabling maintenance of equipment before catastrophic failure
and simultaneously improve reliability and lower costs. This paper reviews the development
of PdM technologies and practices over time, tracing a path from more traditional, adaptive
statistical and signal analysis practices, advancing to and including more recent developments
in machine learning, and deep learning algorithms. We compare the various approaches based
on performance criteria such as accuracy, scalability, ease of understanding, and cost of
implementation and describe the pros and cons of each approach when used with different
industrial applications. In addition, we discuss an emerging scheme regarding explainable Al
(XAI) and causal discovery which addresses the challenge of trust, and transparency with
approaches employing black-box models that is critical in situations where safety is
paramount. We also describe the usefulness of new paradigms, such as data categorization
approaches, multimodal data fusion, edge and federated learning, and quantum computing,
for enhancing scalability and real-time deployment. By collecting existing applications and
examining positives and negatives, applicable principles, and main trade-offs to usability
outcomes, we have noted areas of research that are lacking, such as understanding

interpretability to the PdM system created by the data utilized, availability of data-based
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information, and deployment, which allows us to create next steps for developing PdM

systems that are accurate, interpretable, and scalable within the Industry 4.0 space.

INDEXTERMS: About four key words or phrases, in alphabetical order, separated by
commas, with only the first index term capitalized. All terms following the initial term should

be lowercase unless they are proper nouns, in which case they should have an initial cap.

INTRODUCTION

Predictive maintenance (PdM) is emerging as a common theme of today’s industrial activities
and changing the framework of maintenance from reactive and planned maintenance to data-
driven, and condition-based maintenance 1 2. Given the rise in complexity and
interconnectedness of industrial systems, the consequences of unplanned equipment failures
are particularly costly to industry, with unplanned downtime costing the manufacturing
industry billions annually 3,4. Thus, the transition from corrective maintenance of an asset,
conducted after a failure, and preventive maintenance that performs maintenance tasks
regardless of the asset's operating condition, to predictive maintenance, is grounded in better
optimization of maintenance activities based on the real-time condition of equipment health,
performance measures, and metrics. The concept of predictive maintenance is to give
maintenance teams the ability to foresee equipment failure prior to its occurrence, potentially
allowing maintenance practitioners to conduct a maintenance activity during a planned
downtime, incur a lower maintenance cost, extend the life of the asset, and ultimately
increase performance objectives5,6. Because predictive maintenance is developed from
continuous monitoring of dynamic parameters of an asset, operational condition and state of
the process and equipment conditions, and records of past maintenance activities,
environmental and prognostic conditions, predictive maintenance is based on the
development of specific description models related to operational performance behaviour and

specific degradation models for the physical asset condition 7.

The performance of predictive maintenance methods is fundamentally relational to the
quality and interpretability of the models 89. While classical statistical models might provide
fundamental insights into equipment actions, they are unlikely to characterize the nonlinear,
complex relationships that exist in an industrial setting 10. Industrial processes both include
and surround us with a variety of data most prominently including time-series sensor data,
categorical operational parameters, maintenance logs, or environmental parametersll.

Moreover, the dynamic character of industrial processes creates temporal dependencies, and
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aging mechanisms which would ask for advanced modelling techniques in order to respond to
those changing conditions.

The presence of multiple, simultaneous degradation processes (with varied failure
mechanisms and timescales) adds to the complexity of predictive maintenance. Failures are
often driven by complex interdependencies across multiple parameters which requires an
understanding not only of the relevant failure predictive parameters, but how those relevant
parameters interact with each other and exert influences over time. The ever-increasing
volume and velocity of industrial data being realized from the widespread introduction of 10T
sensors, and Industry 4.0 initiatives, opens-up both a challenge and an opportunity in relation
to the implementation of predictive maintenancel213. Access to high resolution, multi-
dimensional data can provide unprecedented insights into the performance of equipment, yet
the complexity of the data will require an analytic approach that can find meaningful patterns

while still supporting computational efficiency and practical application 14.

ARTIFICIAL INTELLIGENCE AS A TRANSFORMATIVE FORCE IN PREDICTIVE MAINTENANCE

The use of artificial intelligence (Al) for predictive maintenance demonstrates a very
significant improvement leading to better, more accurate, reliable and actionable predictions
of failurel516. Scheduling predictive maintenance is mainly based on the use of machine
learning (ML) algorithms, which practitioners love, based on their ability to identify
automatically complex nonlinear patterns in high-dimensional feature spaces and adapt to
changing operating conditions; both of which have been one of the significant weaknesses of
statistical algorithms17. In addition to traditional models, deep neural network architectures
such as convolutional neural networks for spatial and spectral feature extraction from sensor
signals, and recurrent neural networks for representing temporal dependencies, have been
shown to increase performance capturing complex relationships between different operational
parameters and indicators of equipment health18, 19]. Furthermore, deep learning
architectures and ML algorithms have been verified for their ability to capture the nonlinear,
time-dependent nature of degradation processes, and effectively accommodate the vast and
diverse volumetric data types typically generated in industrial environments (e.g., vibration,
acoustic, thermal, and image) [20]. Advanced algorithms, such as ensemble models, and
advanced ML algorithms, not only leverage predictions from multiple ML algorithms, along
with an uncertainty quantification, to increase the predictive reliability of diagnostic models,
they also enable Al models to dynamically act live and learn continuously from streaming

data, which leads to more adaptive and responsive predictive maintenance strategies.
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Regardless of these advancements, there are major issues to face in adopting it on an
industrial level. The sophistication of modern Al models, particularly deep learning models,
can lead to systems that are "black boxes" which have models that give highly accurate
predictions but limited explainability, making it difficult for people in the field to understand
how recommendations for maintenance were reached [21], [22]. The lack of transparency
presents challenges in safety critical industries for explaining decisions and actions [23], [24]
to support operator trust in the operation of their systems. Safety critical industries, where
people depend on the safety and performance of systems, require an understanding of how
the model arrived at results to maintain trust and implement proper procedures (for projects
with regulatory oversight) while making informed decisions. Addressing all necessary
challenges to deployment of more modern Al models will not only require innovations in
explainable Al but also consideration of deployment issues, i.e. computer cost, data access,
how to combine the Al with human workflows, and providing proper training of human

operators to use Al.

OVERVIEW OF PREDICTIVE MAINTENANCE TECHNOLOGIES

Predictive maintenance involves the use of data-driven approaches and algorithms to predict
equipment failures and improve maintenance. Predictive maintenance's technologies involve
data acquisition, data preparation, failure prediction, and maintenance optimization, and have
evolved over the years through advances in sensors, computing, and analytics. The adoption
of predictive maintenance solutions is contingent on the type of equipment, the modes of
failure for the equipment, availability of data, computational demands, and interpretability. It
takes careful design of effective frameworks to balance the strengths and weaknesses of these
technologies to provide valid and actionable information within the constraints known for
industrial resources. Time-domain analysis is one of the foundational methods for processing
equipment performance data, focusing on how signals change over time. Time-domain
analysis is beneficial for the identification of transient events, to analyse trends, and to

capture the evolution of equipment health indicators over time [25].

Statistical time-domain features allow the foundation of a predictive maintenance system, as
these features provide quantifiable and statistical measures of the signal characteristics, which
can be indicative of the condition of the equipment. Root Mean Square (RMS) values are
useful as a proxy for overall vibration energy and as a particularly sensitive indicator of the
presence of developing faults in rotating machines [7]. Peak values and crest factors indicate
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the presence of impulsive events indicative of bearing failure or gear tooth damage. The
measurements for skewness and kurtosis define the statistical nature of the signal amplitudes,
with significant deviations from normal being indicative of faulty conditions [26].Trend
Analysis Methods emphasize discovering differences over a prolonged time period in the
behaviour of equipment that would reflect long-term degradation. Moving averages and
exponential smoothing methods provide filtering of short-term variability while preserving
the trends indicated of the health evolution of the equipment. Regression analysis and curve
fitting methods are appropriate to quantify equipment degradation and extrapolate trending
behaviours into future state predictions [27].

Autoregressive and Time Series Models offers more advanced methods for capturing the
temporal dependency behaviour of monitoring data of the equipment. The AR, MA, and
ARMA methods have been shown to represent the underlying stochastic processes of
equipment behaviour and could help identify an anomaly as a deviation from expected
temporal behaviour [28]. These different approaches provide a means of being more sensitive
to the dynamic behaviour of equipment responses and may lead to prior identification of
subtle changes in behaviour that precede failure.

Frequency-Domain Analysis Frequency-domain analysis converts time-domain signals into
their frequency components, and may provide spectral features that are more directly
connected to fault mechanisms than time-domain features. This forms the basis of many
predictive maintenance strategies, especially for rotating machinery where various fault types
create frequency-based signatures [29].

Fast Fourier Transform (FFT) analysis is the most commonly used method in predictive
maintenance in that it converts time domain signals into their frequency based components,
allowing the analyst to isolate frequency peaks associated with particular phenomena, such as
shaft speed, meshing gear frequency, or bearing element passing frequency [30]. Power
spectral density measures based on FFT analysis will provide the quantitative measure of
energy pass-through in frequency bins and can be used for the detection of incipient faults
through observation of changes in spectral features.

Advanced Spectral Analysis Methods allow us to go beyond merely conducting an FFT
analysis, providing improved resolution and fault characterization. Welch's power spectral
density estimation produces more reliable spectrum estimates for noisy industrial signals by
segmenting a signal into shorter segments, estimating, and then averaging [31]. Parametric

spectral estimation methods, such as autoregressive spectral analysis, can provide better
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frequency resolution when analysing limited length data. These are particularly useful when
analysing transient phenomena or taking measurements over a short time scale.

Envelope Analysis and Demodulation Techniques are specialized frequency domain methods.
They tend to show strengths when identifying bearing and gear faults, where fault-related
impulses can be modulated onto a higher frequency signal from the bearing's resonance
characteristic. This approach is often comprised of a band-pass filter for the high frequency
components of our signal, followed by envelope detection and spectral analysis of the
envelope signal [32].

Time-Frequency Analysis methods provide an essential link between time-domain and
frequency-domain methods by providing information about the time occurrence of signal
components alongside their frequency content. Time-frequency methods are particularly
useful when signals are non-stationary and, therefore, their frequency content evolves over
time. This is a common characteristic of industrial applications characterized by dynamic
operating conditions or transient fault scenarios [33].

Short-Time Fourier Transform (STFT) is the most basic form of time-frequency analysis and
involves performing the Fourier transform over a short and overlapping time window in order
to observe the trend in frequency content over time [34]. STFT is most useful for analysing
signals with slowly evolving frequency content and typically provides a reasonable
compromise between temporal and frequency resolution. Nevertheless, STFT has a typical
and prominent application in predictive maintenance scenarios when the monitored
machinery operates at various speeds, or when the faults evolve with time.

Wavelet Transform Analysis Compared to the STFT, wavelet transform analysis has better
time-frequency resolutions, especially when examining signals that contain both transient
occurrences and steady-state components [35]. The continuous wavelet transform (CWT) is
great for high-frequency component detection due to high-resolution time properties, and it
can identify low-frequency components with good frequency resolution. The CWT is also
particularly useful for detecting impulsive fault signatures, such as impacts generated by
faulted bearings or damaged gear teeth. Discrete wavelet transforms (DWT) can break down
signals efficiently into the frequency bands of interest via multiresolution analysis and help
extract fault related features from complex signals in a range of frequency bands [36].
Advanced time-frequency methods include the Winger-Ville distribution, the Hilbert-Huang
transform, and empirical mode decomposition for their individual capabilities and
effectiveness at solving specific types of analysis challenges. The Hilbert-Huang transform

combines empirical mode decomposition and Hilbert spectral analysis to provide a detailed
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analysis of nonlinear and non-stationary signals without the need for a priori basis functions
[37]. Finally, these advanced methods have begun theoretical expansions and applications
into the analysis of complex industrial signals when analysis results based on traditional
techniques are insufficient.

The increasing interest in Explainable Artificial Intelligence (XAI) to support predictive
maintenance is driven by operational and regulatory requirements [38]. In other words,
increasingly, industrial operators and practitioners want to attain not just predictive accuracy,
but insight into the prediction: why a particular failure is predicted, which parameters matter
most regarding health or wellbeing of the equipment, and if operational conditions were to
change, to what extent would it influence risk [39]. XAl is especially necessary in industries
with a high public safety consequence, which are heavily regulated, as maintenance plans,
inferences, or recommendations are required to be justified, auditable, and compliant with
regulatory bodies [40]. Traditional XAl methods only partially facilitate explainability;
feature importance analysis or local interpretation methods partially explain model
representation and notion but do not typically or deeply provide insights about causality [41].
It is vital to know which variables and parameters are actively degrading the health or
degrading the equipment, rather than simply knowing there is a correlation for events
resulting in failures; and this information is essential for preventive maintenance to act on
root causes rather than symptoms [42], [43].

To address these challenges, causal discovery has a growing presence as a promising
approach for predictive maintenance. Causal discovery, by using approaches that model
causal structures from observational data, overcomes the limitations of causal reasoning
based on correlation, and also provides insight into the causes of equipment behaviour and
failure [44], [45], [46]. In addition to being an alternative source of robustness and
generalizability for predictive models, causal discovery will also provide more actionable
information as to how maintenance decisions can connect back to the actual causes of the
degradation of equipment [47]. Recent work has uncovered the potential for causal discovery
and causal inference to be leveraged together alongside XAl in developing predictive
maintenance systems that are valid with modern Al while using the explanations of causal
inference [48], [49]. All in all, this synergistic approach provides an opportunity to develop
maintenance frameworks that are valid, interpretable, trustworthy, and fundamentally linked
to the causal mechanisms of equipment failures [50].
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COMPREHENSIVE METHOD COMPARISON ANALYSIS

1. Core Machine Learning Algorithms

Core ML algorithms exhibit trade-offs between performance, scalability, interpretability, and
computational complexity. Random Forest [51] exhibits strong accuracy and can handle
missing data, but takes up a lot of memory space and is not very interpretable. XGBoost [52]
gives good prediction performance and scalability and handles missing data and cross-
validation well, but needs delicate tuning of hyper-parameters and much more interpretation
difficulty. Deep learning with CNNs [53], provides accuracy in image, signal, and pattern
recognition but needs a large dataset, is computationally intensive, and like many deep
learning approaches, can be considered "black-box™ approaches. DBSCAN [54] provides
interpretable and low-complexity clustering methods useful for anomaly detection while not
requiring pre-defined clusters, however, DBSCAN can be quite sensitive to density and
parameter selections. Overall, no single method dominates all criteria; deep learning suits
high-dimensional, unstructured data, while Random Forest and XGBoost balance
interpretability and scalability for structured data.

2. Predictive Maintenance Methods

Different predictive maintenance methods vary in accuracy, resource needs, and value trade-
offs. A traditional statistical method, like an ARMA model, is relatively easy (days—weeks)
and fast to implement, achieves medium accuracy (75%—-85%), and has limited cost savings
when put into practice. Machine Learning (ML) methods, on the other hand, achieve
medium-high accuracy (85%-95%) and potential cost savings of 25%-40% by using multi-
modal data, but require a longer timeframe to implement, larger data sets, and feature
engineering [2]. Deep Learning (DL) methods yield the greatest accuracy (90%—-98%) and
would also create the highest possible cost savings (35%-50%) in large industrial settings,
however they require high quality data, extensive compute, longer implementation times, and
often have reduced or lacking interpretability [20]. The trade-off is that statistical methods are
faster and easy to interpret, ML methods are better than statistical methods and make some
trade-offs on interpretability and resource use, and DL methods give the best predictive
quality but worse resource use and interpretability. Traditional signal analyses still have a
place for use with monitoring vibrations and acoustics because of their ease of use and speed
of implementation, but they cannot provide the predictive capabilities of ML or DL[29].

3. Explainable Al (XAIl) Methods

Popular Explainable Al (XAI) methods differ in scope, computational cost, and reliability,

each with trade-offs. LIME [21] offers local approximations of black-box models with low
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computational cost but shows medium reliability due to instability across runs. SHAP [55]
extends this approach for local and global interpretability using cooperative game theory
principles; it is more computationally expensive but highly reliable and widely used in
sensitive domains like finance and healthcare. Attention-based mechanisms provide global
interpretability within deep learning models, balancing efficiency and usability, though
reliability depends on model complexity [56]. Rule-based methods provide readily
interpretable explanations across the globe, especially through decision trees or expert
systems; however, they typically apply to simpler and narrower domains [57]. Gradient-based
methods produce local explanations for neural networks in an efficient manner, though they
may lack reliability [58]. Ultimately, the choice of an XAl method will require a trade-off
between interpretability, generalizability, and computational expense of the method.

4. Multi-modal and Fusion Methods

Early fusion methods involve filtering and fusing together several raw or low-level features
into a single representation prior to model training. These methods maintain maximum
amounts of available information with low computational cost; however, they can also
remain sensitive to noise or modality failures. Early fusion methods provide simplicity and
efficiency of the applied processing when compared to separate models. Applicability of
early fusion approaches range, among others, to the domains of audio-visual emotion
recognition [59] or speech processing [59]. Late fusion is a method combining the output
from separate models trained on pre-extracted features. This method ensures reliability
through cross-validation, and offers moderate computational requirements, at the expense of
lower amounts of raw information. In education the late fusion approach has been applied to
multimedia retrieval [60] and healthcare diagnostics [60]. Hybrid fusion employs both a
filtering step and a late fusion filtered decision from the individually trained models. Hybrid
approaches afford the ability to maintain higher amounts of available information but at a
greater computational cost, and require greater synchronization in analysis methods. While
more expensive to implement, hybrid analysis methods can have utility in complicated

domains like autonomous driving or medical imaging [61].

DISCUSSION

Decision-making and predictive analytics can involve many different methods, each with
their own strengths and trade-offs depending on the goals of the analysis. The use of
traditional statistical models such as ARMA lends itself to quick implementation, includes an

easier use, and offers the stated results above 50% accuracy. They can be good for low data
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solutions [11], [29]. Compared to traditional statistical methods, machine learning (ML)
leverages the use of multi-modal data to achieve a more significant accuracy potential.
Within the family of ML models, different considerations such as feature engineering and
large datasets may hinder performance outcomes. Deep learning (DL) attain a high level of
performance, with increased accuracy, efficiency, and cost savings at scale; DL models may
sacrifice speed, resource intensity, and/or interpretability along the way. Unlike deep
learning, CNNs leverage a significant portion of their power from the identification of spatial
features (with diagnostic information encoded).And clustering methods of unsupervised
learning, such as DBSCAN, remain relevant and applicable while offering strong
interpretability [62], [53], [54], [2], [20]. In a complementary way, edge computer gives rise
to new avenues of real-time operational analytics through model compression and federated
(edge) learning frameworks [63], [64], [65]. Quantum computing also offers promise of
application within the predictive maintenance framework through their capabilities related to
optimization or advanced ML methods [66], [67]. To manage related issues of transparency,
many XAl (explainable Al) methods perform analysis through additives from or in
concurrence to black box methods. These models vary in levels of interpretability, cost, and
reliability; with examples such as LIME, SHAP, attention mechanisms, and rule-based
systems [21], [55], [56], [57].

In the end, multimodal fusion methods combine different data sources: early fusion offers
high information and low robustness, late fusion improves reliability of decision but with
moderate complexity, and hybrid fusion gains the best of both methods at a high computation

cost especially within autonomous vehicles or medical imaging [59], [60], [61].

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

Predictive maintenance (PdM) has evolved from simple time-series models to advanced Al
systems capable of learning complex patterns from multimodal industrial data. Although
traditional statistical methods retain their appeal owing to their simplicity and interpretability
compared to ML and DL, which, although typically yield superior prediction accuracy in
exchange for a reduced interpretability and greater computational cost. Effective explainable
Al and causal discovery contribute significantly to enhancing the trustworthiness associated
with making consequently significant PdM interventions. The rapid developments in
multimodal fusion, edge and federated learning, and quantum optimization are anticipated to
contribute further to enhancements in scalability, latency, and adaptability thereby

constituting intelligent, explicable, and resilient Industry 4.0 maintenance ecosystems.
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The widespread adoption of 10T has increased the interest in edge analytics, offering the
potential to minimize latency, afford savings in the use of bandwidth and will drive
improvements in reliability. Edge Al enables inference to be undertaken in real-time through
the use of lightweight models accompanied by techniques such as pruning and knowledge
distillation. Federated learning enables a collaborative approach to model training between
different distributed sites, while protecting owner privacy. Quantum computing, including
quantum machine learning and optimization, may further enhance pattern recognition,
scheduling, and resource allocation in complex industrial systems, complementing edge and

distributed Al approaches for next-generation predictive maintenance.
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