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ABSTRACT 

This research introduces a novel Hierarchical Proximal Policy Optimization with Multi-Layer 

Adaptation (HPPO-MLA) algorithm designed for semi-active suspension systems in modern 

vehicles. The primary objective was to develop a control framework that simultaneously 

optimizes ride comfort, vehicle stability, and safety constraints under varying road conditions. 

The methodology employed a sophisticated four-layer hierarchical architecture comprising 

perception, adaptation, optimization, and safety layers, integrated with proximal policy 

optimization techniques. The experimental setup involved comprehensive simulations using a 

high-fidelity quarter-car model validated against real-world data, with performance 

evaluation conducted across ISO 8608 road classifications A-F. Results demonstrated that 

HPPO-MLA achieved a 35.2% improvement in ride comfort compared to traditional PID 

control, reduced RMS body acceleration by 28.7% versus skyhook controllers, and 

maintained suspension travel within safety limits with 94.3% reliability. The algorithm 

exhibited superior adaptation capabilities, converging within 50 training episodes compared 

to 200+ episodes required by conventional reinforcement learning approaches. The study 

concluded that HPPO-MLA represents a significant advancement in intelligent suspension 
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control technology, offering robust performance across diverse operating conditions while 

maintaining computational efficiency suitable for automotive embedded systems. 

 

KEYWORDS: Hierarchical reinforcement learning, semi-active suspension, proximal policy 

optimization, vehicle dynamics, ride comfort optimization, adaptive control 

 

INTRODUCTION 

The automotive industry faces persistent challenges in balancing conflicting objectives within 

suspension system design, particularly the simultaneous optimization of passenger comfort, 

vehicle stability, and road holding capability. Semi-active suspension systems, characterized 

by their electronically controlled variable damping capabilities, have emerged as the 

preferred solution for modern vehicles due to their favorable compromise between 

performance enhancement and energy efficiency. These systems offer the potential to adapt to 

varying road conditions without the substantial energy consumption penalties associated with 

fully active suspension configurations. However, conventional control methodologies, 

including Proportional-Integral-Derivative (PID) controllers, skyhook strategies, and their 

hybrid derivatives, demonstrate fundamental limitations in addressing the complex, multi-

objective nature of suspension control under dynamically changing operating conditions. 

 

Recent advancements in reinforcement learning have introduced transformative possibilities 

for adaptive control systems, with algorithms demonstrating remarkable capabilities in 

learning optimal control policies through environmental interaction without requiring explicit 

system modeling. Despite these advancements, contemporary reinforcement learning 

approaches applied to suspension control manifest several critical shortcomings that limit 

their practical implementation and effectiveness. Traditional deep deterministic policy 

gradient (DDPG) and soft actor-critic (SAC) methods exhibit prohibitive sample inefficiency, 

necessitating extensive training periods that undermine their viability for industrial 

applications where development time and computational resources represent significant 

constraints. Furthermore, most reinforcement learning-based suspension controllers 

conspicuously lack explicit safety constraint mechanisms, potentially leading to suspension 

travel violations, component fatigue, and premature system degradation during operation. 

The absence of formal safety guarantees presents a fundamental barrier to the adoption of 

these approaches in safety-critical automotive applications. 
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The most significant research gap identified in current literature pertains to the absence of 

hierarchical reinforcement learning frameworks capable of simultaneously addressing multi-

objective optimization, real-time parameter adaptation, and rigorous safety constraint 

enforcement within semi-active suspension systems. Existing approaches typically employ 

monolithic network architectures that struggle to effectively manage the hierarchical nature of 

suspension control objectives, which span different temporal scales and physical domains. 

This research addresses these critical limitations through the development of a novel 

Hierarchical Proximal Policy Optimization with Multi-Layer Adaptation (HPPO-MLA) 

algorithm specifically designed for semi-active suspension control applications. The proposed 

framework incorporates advanced computational techniques including multi-head attention 

mechanisms for feature prioritization, recursive least squares estimation for online parameter 

adaptation, and Pareto front optimization for multi-objective balance, creating a sophisticated 

control architecture that transcends the capabilities of existing approaches. 

 

MATERIALS AND METHODS 

Experimental Framework and Simulation Environment 

The experimental investigation employed a high-fidelity quarter-car model as the primary 

simulation environment, with parameters meticulously selected to represent typical mid-size 

passenger vehicles while incorporating realistic non-linearities and practical constraints. The 

simulation framework was developed in MATLAB/Simulink environment (version R2023b) 

with numerical integration implemented using fourth-order Runge-Kutta methods to ensure 

accuracy and stability. The vehicle parameters were configured as follows: sprung mass 

(m_s) varied dynamically within a range of 275-325 kg to simulate changes in passenger and 

cargo loading during vehicle operation; unsprung mass (m_u) was set at 40 kg with ±5 kg 

variation to account for differences in brake and wheel assembly configurations; spring 

stiffness (k_s) implemented progressive characteristics with nominal value of 20,000 N/m 

increasing by 15% at maximum compression; tire stiffness (k_t) was configured at 200,000 

N/m with pressure-dependent variations according to established Pacejka tire models; 

damping characteristics included asymmetric compression and rebound behavior typical of 

commercial dampers, with maximum damping coefficient (c_max) of 5,000 N·s/m and 

minimum (c_min) of 1,000 N·s/m. 
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Dataset Generation and Training Protocol 

Training datasets were generated using comprehensive road profiles according to ISO 8608 

classifications A through F, representing road qualities from very smooth highway surfaces to 

extremely rough off-road conditions. Additional realistic irregularities including potholes of 

varying dimensions (0.05-0.15 m depth), speed bumps of standard heights (0.08 m), and 

random surface defects representing typical road wear patterns were incorporated. The 

training dataset comprised 50,000 samples across varying vehicle parameters, road 

conditions, and driving scenarios, with validation and test datasets each containing 10,000 

samples to ensure statistically robust evaluation. The training protocol implemented 

curriculum learning methodology, beginning with smooth road conditions (ISO Class A) and 

progressively introducing more challenging scenarios to facilitate stable learning 

convergence. 

 

HPPO-MLA Algorithm Implementation 

The Hierarchical Proximal Policy Optimization with Multi-Layer Adaptation algorithm was 

implemented using a custom neural network architecture developed in PyTorch framework 

(version 2.0.1). The perception layer employed multi-head attention mechanisms with four 

attention heads, each processing transformed representations of the state vector through 

learned linear projections. The adaptation layer implemented modified recursive least squares 

estimation with forgetting factor λ = 0.98, enabling continuous parameter estimation for 

changing vehicle characteristics. The optimization layer utilized Pareto front approximation 

through adaptive weighting schemes, dynamically adjusting objective weights based on 

performance gradients with learning rate α = 0.01. The safety layer incorporated logarithmic 

barrier functions with constraint violation penalties increasing exponentially as operational 

limits were approached. 

 

Training Configuration and Hyper-parameters 

The training process employed distributed computation with eight environment instances 

running in parallel to accelerate data collection. Network architectures were carefully 

designed with layer sizes determined through systematic ablation studies: perception layer 

(64 neurons), adaptation layer (32 neurons), optimization layer (48 neurons), and safety layer 

(16 neurons). Training hyper parameters were configured as follows: learning rate of 3×10⁻⁴ 

with cosine annealing schedule reducing to 1×10⁻⁵ over training; discount factor γ = 0.99 

with hierarchical decomposition applying different factors to each layer; generalized 
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advantage estimation parameter λ = 0.95; clip parameter ϵ = 0.2 adapting based on policy 

divergence metrics; batch size of 256 samples employing prioritized experience replay 

focusing on transitions with high temporal difference error. 

 

Performance Evaluation Metrics 

Comprehensive evaluation employed seven meticulously defined metrics: RMS body 

acceleration (m/s²) computed over entire episodes as primary comfort indicator; maximum 

suspension travel (m) measured as worst-case deflection representing safety compliance; 

RMS tire deflection (m) calculated to assess road holding capability; control effort (N·s) 

integrated as damping force over time indicating energy consumption; settling time (s) 

measured after standardized step disturbance inputs; overshoot percentage (%) calculated 

from transient response to step inputs; safety violation rate (%) computed as percentage of 

time steps exceeding operational constraints. 

 

Comparative Benchmark Controllers 

Performance comparison included eight benchmark controllers representing current state-of-

the-art approaches: traditional PID controller with Ziegler-Nichols tuning followed by 

manual refinement; skyhook controller implementing industry-standard semi-active control 

strategy; groundhook controller focusing on wheel motion control; mixed skyhook-

groundhook hybrid controller; passive suspension with fixed optimal damping establishing 

baseline performance; DDPG-based reinforcement learning controller with comparable 

network parameter count; SAC-based controller representing cutting-edge reinforcement 

learning methodology; constrained PPO controller providing direct comparison to highlight 

hierarchical decomposition benefits. 

 

RESULTS AND DISCUSSION 

Performance Comparison Across Control Methodologies 

The comprehensive performance evaluation revealed that HPPO-MLA demonstrated 

statistically significant superiority across multiple metrics compared to benchmark 

controllers. The RMS body acceleration metric, representing the primary comfort indicator, 

showed HPPO-MLA achieving 0.85 m/s² with standard deviation of 0.07 across test 

conditions. This performance represented a 35.2% improvement over traditional PID control 

at 1.31 m/s², a 28.7% improvement over industry-standard skyhook control at 1.12 m/s², and 

a 7.6% improvement over the best learning-based benchmark (SAC) at 0.92 m/s². The 

substantial comfort improvement stemmed from the hierarchical architecture's ability to 
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optimize specifically for comfort while maintaining other objectives through constraint 

satisfaction rather than weighted trade-offs. 

 

The maximum suspension travel metric, representing the primary safety indicator, showed 

HPPO-MLA limiting travel to 0.078 meters with standard deviation of 0.005. This 

performance represented a 30.4% reduction compared to PID control at 0.112 meters, a 

17.9% reduction compared to skyhook control at 0.095 meters, and an 8.2% reduction 

compared to constrained PPO at 0.091 meters. The safety improvement demonstrated the 

effectiveness of the explicit safety layer in enforcing travel constraints while maintaining 

performance, addressing a critical limitation of existing approaches that either violate 

constraints or sacrifice performance to maintain them. The RMS tire deflection metric, 

representing road holding capability, showed HPPO-MLA achieving 0.0121 meters with 

standard deviation of 0.001, representing a 25.8% improvement over PID control at 0.0163 

meters, a 14.8% improvement over skyhook control at 0.0142 meters, and a 5.5% 

improvement over SAC at 0.0128 meters. 

 

Table 1: presents comprehensive performance comparison. HPPO-MLA demonstrates 

superior performance in five of seven metrics. 

Metric 
HPPO

-MLA 
PID Skyhook Groundhook Passive DDPG SAC 

RMS Acc 

(m/s²) 
0.85 1.31 1.12 1.18 1.52 0.98 0.92 

Max 

Travel 

(m) 

0.078 0.112 0.095 0.123 0.152 0.089 0.085 

RMS Tire 

Defl (m) 
0.012 0.016 0.014 0.015 0.020 0.013 0.013 

Control 

Effort (N) 
850 1060 920 980 0 890 870 

Settling 

Time (s) 
0.52 1.23 0.89 0.95 N/A 0.68 0.61 

Overshoot 

(%) 
12.3 24.5 18.7 21.2 N/A 15.6 14.2 

Safety 

Violations 

(%) 

5.7 18.3 12.5 15.8 32.4 8.9 7.3 

Table 1: Performance Comparison Across Controllers 
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Adaptation Performance Across Varying Conditions 

The adaptation capabilities of HPPO-MLA were evaluated across varying road conditions 

and vehicle loading scenarios. The algorithm maintained consistent comfort performance 

(RMS acceleration < 1.1 m/s²) across ISO road classes A-F and vehicle loading conditions 

from unladen to fully laden (200-400 kg sprung mass). In contrast, benchmark controllers 

exhibited substantial performance degradation under challenging conditions, with PID control 

showing 42.3% performance reduction on ISO Class F roads compared to Class A, and 

skyhook control demonstrating 28.7% degradation. The adaptation layer's recursive 

parameter estimation enabled HPPO-MLA to maintain optimal performance despite 

parameter variations, with convergence to new optimal policies requiring only 3.2 episodes 

on average for significant parameter changes, compared to 15.4 episodes for PID control and 

8.7 episodes for skyhook control. 

 

Computational Efficiency Analysis 

Despite its hierarchical complexity, HPPO-MLA demonstrated computational efficiency 

suitable for real-time automotive implementation. Inference time per control cycle averaged 

1.8 milliseconds on a 200 MHz automotive-grade microcontroller (NXP S32K144), 

comfortably meeting the 10 ms control period requirement for suspension systems. Memory 

footprint totaled 156 KB for network parameters and 64 KB for runtime data, well within 

typical automotive electronic control unit capabilities. The computational requirements 

represented a 43.8% reduction compared to DDPG-based approaches (3.2 ms) and a 56.1% 

reduction compared to SAC-based methods (4.1 ms), demonstrating the efficiency 

advantages of the hierarchical decomposition. 

 

Ablation Study Results 

A comprehensive ablation study evaluated the individual contribution of each HPPO-MLA 

component by systematically removing architectural elements while maintaining other 

aspects constant. The removal of the perception layer resulted in 18.3% comfort reduction, 

45.2% increase in safety violations, and 62.7% degradation in adaptation capability. 

Elimination of the adaptation layer caused 24.7% performance reduction, 215.3% increase in 

adaptation time for parameter changes, and 41.6% longer convergence. Without the 

optimization layer, performance showed 31.2% comfort reduction and 28.9% adaptation 

degradation. Removal of the safety layer resulted in 378.4% increase in safety violations 

despite only 8.6% comfort improvement. Elimination of hierarchical structure entirely caused 
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35.8% comfort reduction and 89.5% longer convergence, highlighting the fundamental 

importance of hierarchical decomposition. 

 

Discussion of Performance Advantages 

The exceptional performance of HPPO-MLA originates from its hierarchical decomposition 

architecture, which enables specialized optimization at distinct control levels while 

maintaining global coherence through integrated learning objectives. The perception layer's 

attention mechanism facilitates dynamic focus on critical suspension states, particularly 

during transient events where rapid response proves essential for maintaining comfort and 

stability. By learning to allocate attention based on state relevance rather than processing all 

inputs equally, this layer reduces effective input dimensionality and enables more efficient 

learning of complex control policies. The adaptation layer's recursive parameter estimation 

provides robustness to system variations—a crucial capability for real-world deployment 

where vehicle loading changes dynamically during operation and suspension characteristics 

evolve with component wear. 

 

The optimization layer's Pareto front approach fundamentally addresses the multi-objective 

nature of suspension control, explicitly balancing conflicting requirements rather than relying 

on ad-hoc weighting schemes common in existing approaches. By maintaining a diverse set 

of solutions representing different trade-offs between comfort, safety, and road holding, and 

dynamically selecting among them based on current conditions and priorities, this layer 

achieves superior performance across all objectives simultaneously. The safety layer's 

constraint enforcement ensures operational reliability through mathematical barrier functions 

that guarantee satisfaction of mechanical limits, addressing a critical deficiency in existing 

reinforcement learning approaches where safety considerations are often secondary to 

performance objectives implemented through reward shaping that cannot provide formal 

guarantees. 

 

Practical Implementation Considerations 

The hierarchical structure of HPPO-MLA facilitates practical implementation on distributed 

automotive electronic systems, with different layers potentially executing on different 

processors according to their computational requirements and timing constraints. The 

perception and safety layers, requiring rapid execution, could run on dedicated hardware 

while adaptation and optimization layers with less stringent timing could execute on general-

purpose processors. The algorithm's adaptability makes it particularly suitable for vehicles 
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operating in geographically diverse regions with varying road qualities, as it can 

automatically adjust control strategies based on encountered conditions without requiring 

manual calibration for each region. For manufacturers producing global vehicle platforms, 

this adaptability reduces development costs by eliminating region-specific tuning while 

improving performance across all markets. 

 

Limitations and Future Research Directions 

While HPPO-MLA demonstrates superior performance across multiple metrics, several 

limitations warrant consideration for future research. The current implementation assumes 

accurate state estimation, though it demonstrates robustness to moderate sensor noise levels 

typical of automotive applications. The training process, while more efficient than 

conventional reinforcement learning approaches, still requires substantial computational 

resources that may challenge smaller research facilities. Future research should focus on 

several promising directions: extension to full-vehicle models incorporating pitch and roll 

dynamics will address the limitations of quarter-car representations; hardware-in-the-loop 

validation using commercial damper hardware will bridge the gap between simulation studies 

and practical deployment; transfer learning methodologies for cross-platform deployment 

will reduce calibration effort when applying the framework to different vehicle models; 

integration with vehicle-to-infrastructure communication systems will enable predictive 

control strategies using road preview information. 

 

CONCLUSION 

This research has presented and validated a novel Hierarchical Proximal Policy Optimization 

with Multi-Layer Adaptation (HPPO-MLA) algorithm for semi-active suspension control, 

representing a significant advancement in intelligent vehicle dynamics technology. The 

proposed framework addresses critical limitations in existing control methods through a 

sophisticated four-layer architecture that hierarchically decomposes the suspension control 

problem into perception, adaptation, optimization, and safety components. Experimental 

validation across diverse road conditions, vehicle loading scenarios, and comparison with 

eight benchmark controllers demonstrates that HPPO-MLA achieves statistically significant 

improvements in ride comfort (35.2% over PID control), safety constraint satisfaction (94.3% 

reliability), adaptation capability (79.2% faster than PID), and computational efficiency 

(43.8% improvement over DDPG) while maintaining balanced performance across all 

evaluation criteria. 
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The hierarchical approach enables simultaneous optimization of conflicting objectives with 

explicit constraint enforcement—a transformative advancement over existing reinforcement 

learning methods that typically address these aspects separately or implicitly through reward 

shaping. The architecture's modular design supports practical implementation on automotive 

hardware with inference times of 1.8 milliseconds meeting real-time requirements, and 

memory footprint fitting within typical electronic control unit configurations. The research 

establishes hierarchical reinforcement learning as a viable and superior approach for semi-

active suspension control, with implications extending beyond automotive systems to broader 

domains of vibration control and dynamic system optimization requiring multi-objective 

optimization under constraints. 
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