

International Journal Advanced Research Publications

SUSTAINED-RELEASE TABLETS: PRINCIPLES, FORMULATION STRATEGIES, EVALUATION, AND RECENT ADVANCES

Asmaa Abdelaziz Mohamed*

College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq.

Article Received: 03 December 2025, Article Revised: 23 December 2025, Published on: 11 January 2026

*Corresponding Author: Asmaa Abdelaziz Mohamed

Al-Zahraa University for Women, Karbala, Iraq.

DOI: <https://doi-doi.org/101555/ijarp.5209>

ABSTRACT

Sustained-release (SR) tablets represent an advanced oral drug delivery approach designed to maintain therapeutic drug concentrations over an extended period while minimizing dosing frequency and plasma level fluctuations associated with conventional immediate-release formulations. The development of SR tablets is primarily driven by the need to enhance patient compliance, reduce adverse effects, and improve therapeutic efficacy, particularly in the management of chronic diseases. This review provides a comprehensive overview of the principles underlying sustained-release drug delivery, including pharmacokinetic rationale, criteria for drug selection, and formulation strategies. Various types of SR tablet systems, such as matrix-based, reservoir-type, osmotic-controlled, and ion-exchange resin systems, are discussed in detail with emphasis on their mechanisms of drug release. The role of polymers, including hydrophilic, hydrophobic, biodegradable, and pH-dependent polymers, in controlling drug release kinetics is critically examined. Additionally, formulation methods, evaluation parameters, in-vitro dissolution testing, and mathematical modeling of drug release kinetics are addressed. Recent advancements in sustained-release technology, including smart polymers, three-dimensional printing, and quality-by-design approaches, are also highlighted. Overall, sustained-release tablets continue to play a pivotal role in modern pharmaceutical development, offering improved therapeutic outcomes and expanded possibilities for oral controlled drug delivery systems.

KEYWORDS: Sustained-release tablets; Controlled drug delivery; Oral drug delivery; Matrix systems; Release kinetics; Polymers.

1. INTRODUCTION

Oral drug delivery remains the most preferred route of administration due to its simplicity, safety, patient acceptance, and economic advantages. Conventional immediate-release (IR) dosage forms often produce rapid drug absorption, leading to sharp peaks in plasma concentration followed by rapid decline below the therapeutic window. Such fluctuations may result in suboptimal therapeutic outcomes, increased side effects, and poor patient compliance, especially for drugs requiring frequent administration [1, 2].

Sustained-release (SR) tablets, a subset of modified-release dosage forms, are designed to release the drug at a controlled rate over an extended period, thereby maintaining relatively constant plasma drug concentrations within the therapeutic range for prolonged durations. These systems represent a cornerstone in the management of chronic diseases such as hypertension, diabetes mellitus, asthma, and cardiovascular disorders [3,4].

The fundamental rationale behind sustained-release formulations is to optimize drug therapy by controlling the rate and duration of drug release. The desired pharmacokinetic profile aims to approximate a steady-state plasma concentration, minimizing fluctuations associated with multiple dosing of IR products [5,6].

Sustained-release (SR) drug delivery systems are rationally designed by considering key pharmacokinetic and pharmacodynamic parameters, including drug half-life, absorption rate constant (Ka), elimination rate constant (Ke), and the therapeutic window. Drugs with relatively short biological half-lives (approximately 2–6 h) and rapid elimination profiles are the most suitable candidates for SR formulations, provided that drug absorption is not the rate-limiting step. Under these conditions, sustained-release systems can maintain plasma drug concentrations within the therapeutic range for extended periods, thereby reducing dosing frequency and minimizing peak–trough fluctuations [7].

Advantages and Disadvantages of Sustained-Release Tablets [8]

Advantages

- Reduced dosing frequency and improved patient compliance
- Decreased peak-related adverse effects
- Improved therapeutic efficacy and disease control
- Reduced total drug dose over time
- Enhanced convenience for long-term therapy

Disadvantages

- Risk of dose dumping, especially with alcohol intake
- Difficult dose adjustment in case of toxicity
- Not suitable for drugs with narrow absorption windows
- Higher development and manufacturing costs
- Complex formulation and quality control requirements

2. Criteria for Drug Selection

Not all drugs are suitable candidates for sustained-release (SR) formulations. Ideal drugs for SR delivery possess specific physicochemical and pharmacokinetic properties that allow controlled release while maintaining therapeutic efficacy and safety. Selection is based on factors such as dose, half-life, bioavailability, solubility, absorption characteristics, therapeutic index, and stability in the gastrointestinal (GI) tract [9].

Table 1. Ideal Characteristics of Drugs for SR Tablets.

Parameter	Desired Characteristics
Dose	≤ 500 mg
Half-life	2–6 hours
Bioavailability	High and consistent
Solubility	Moderate
Absorption	Throughout GI tract
Therapeutic index	Moderate to wide
Stability	Stable in GI environment

3. Classification of Sustained-Release Tablets [10].

Sustained-release (SR) tablets can be classified based on their mechanism of drug release and the type of polymer or system used to control release as in Figure 1.

3.1 Matrix Systems

In matrix systems, the drug is homogeneously dispersed within a polymeric matrix that controls the rate of drug release. Release occurs primarily via diffusion through the polymer network and/or erosion of the matrix.

3.2 Hydrophilic Matrix Tablets

Hydrophilic polymers, such as hydroxypropyl methylcellulose (HPMC), swell upon contact with gastrointestinal (GI) fluids, forming a viscous gel layer. Drug release occurs by diffusion

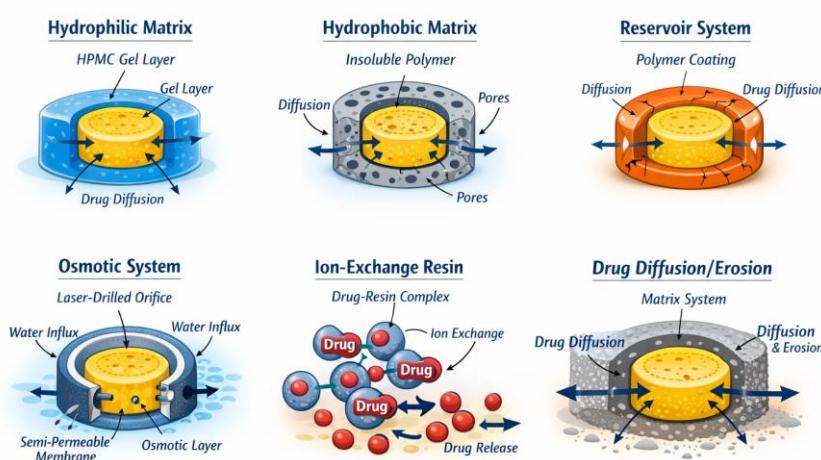
through this gel layer and gradual erosion of the matrix. These systems are widely used due to their simplicity and reproducibility.

3.3 Hydrophobic Matrix Tablets

Hydrophobic matrices employ insoluble polymers (e.g., ethyl cellulose, waxes) to retard drug release. The release mechanism is primarily diffusion through pores or channels formed in the matrix, and these systems are particularly suitable for drugs sensitive to hydration or erosion.

3.4 Reservoir (Coated) Systems

In reservoir systems, a drug core is coated with a rate-controlling polymer membrane. Drug release occurs via diffusion through the coating or through pores that may form in situ. These systems allow precise control over release kinetics but carry a risk of dose dumping if the coating is compromised.


3.5 Osmotic Controlled-Release Systems

Osmotic systems consist of a semi-permeable membrane enclosing a drug core with osmotic agents. Water influx generates osmotic pressure, which pushes the drug out through a laser-drilled orifice at a controlled rate. These systems provide highly reproducible release profiles largely independent of GI pH and motility.

3.6 Ion-Exchange Resin Systems

Drugs are complexed with ion-exchange resins and released in the GI tract upon exposure to counter-ions in fluids. Release occurs by ion exchange, and the rate can be tailored by selecting resins of different strengths or by coating with polymers to modulate diffusion.

Types of Sustained-Release Tablets

Figure 1. types of sustained release tablets.

4. Polymers employed in SR

polymers play a crucial role in controlling drug release from sustained-release (SR) tablets. The choice of polymer depends on the **desired release mechanism**, drug properties, and target site of action. Polymers can be hydrophilic, **hydrophobic**, **natural**, **biodegradable**, or **pH-dependent**, each providing distinct mechanisms of release control [11,12]

Table 2. Polymers Commonly Used in SR Formulations.

Polymer Category	Examples	Role
Hydrophilic	HPMC, Carbopol	Gel formation, diffusion control
Hydrophobic	Ethyl cellulose	Diffusion retardation
Natural	Guar gum, xanthan gum	Swelling and erosion
Biodegradable	PLA, PLGA	Controlled erosion
pH-dependent	Eudragit® L/S	Site-specific release

5. Mechanisms of Drug Release

Drug release from sustained-release (SR) tablets can occur through one or more of the following mechanisms [13]:

1. Diffusion-Controlled Release

Drug molecules move from the matrix or core through a polymer barrier or gel layer by passive diffusion. Common in hydrophilic and hydrophobic matrix systems.

2. Swelling-Controlled Release

Hydrophilic polymers (e.g., HPMC) swell upon contact with GI fluids, forming a viscous gel through which the drug diffuses gradually.

3. Erosion-Controlled Release

Drug release occurs as the polymer matrix gradually erodes or dissolves, releasing embedded drug molecules over time.

4. Osmotically Controlled Release

Semi-permeable membranes allow water influx into the tablet core, generating osmotic pressure that pushes drug out through an orifice at a controlled rate.

5. Combination Mechanisms

Many SR tablets use **hybrid approaches** where diffusion, swelling, and erosion simultaneously contribute to controlled drug release.

6. Formulation Approaches

Several techniques are employed to prepare sustained-release (SR) tablets. The choice of method depends on the physicochemical properties of the drug, desired release profile, and target site of action [14, 15].

6.1 Direct Compression

- The simplest method, involving blending the drug with release-retarding polymers and compressing directly into tablets.
- Suitable for drugs with good flow and compressibility.

6.2 Wet Granulation

- Improves flow properties and content uniformity, particularly for high-dose drugs.
- Granules are prepared with a binder solution, dried, and compressed into SR tablets.
- Enhances mechanical strength and reduces segregation during tablet compression.

6.3 Melt Granulation

- Utilizes waxy or meltable materials (e.g., glyceryl behenate) that melt and solidify, forming a release-retarding matrix.
- Offers controlled release without the need for solvents, making it suitable for moisture-sensitive drugs.

7. Evaluation of Sustained-Release Tablets [15, 16].

Evaluation ensures **quality, uniformity, and controlled-release behavior** of SR tablets.

7.1 Pre-Compression Parameters

- Angle of repose: Assesses flow properties of powder or granules.
- Bulk and tapped density: Determines packing characteristics.
- Hausner ratio and Carr's index: Evaluate compressibility and flowability.

7.2 Post-Compression Parameters

- Weight variation: Ensures uniformity of dose among tablets.
- Hardness and friability: Assess mechanical strength and resistance to breaking during handling.
- Drug content uniformity: Confirms consistent drug distribution in all tablets.

7.3 In-Vitro Dissolution Studies

- Conducted using USP Apparatus I (basket) or II (paddle).
- Performed under different pH conditions to simulate gastrointestinal transit.

- Dissolution data are used to evaluate release kinetics and compare with reference or target release profiles.

8. Recent Advances in Sustained-Release Tablets [17-19]

Recent innovations in sustained-release (SR) tablet technology aim to improve precision, patient compliance, and therapeutic efficacy. Key advances include:

- **Smart and Stimuli-Responsive Polymers**

Polymers that respond to pH, temperature, or enzymatic activity can modulate drug release in response to physiological conditions, enabling site-specific or on-demand drug delivery.

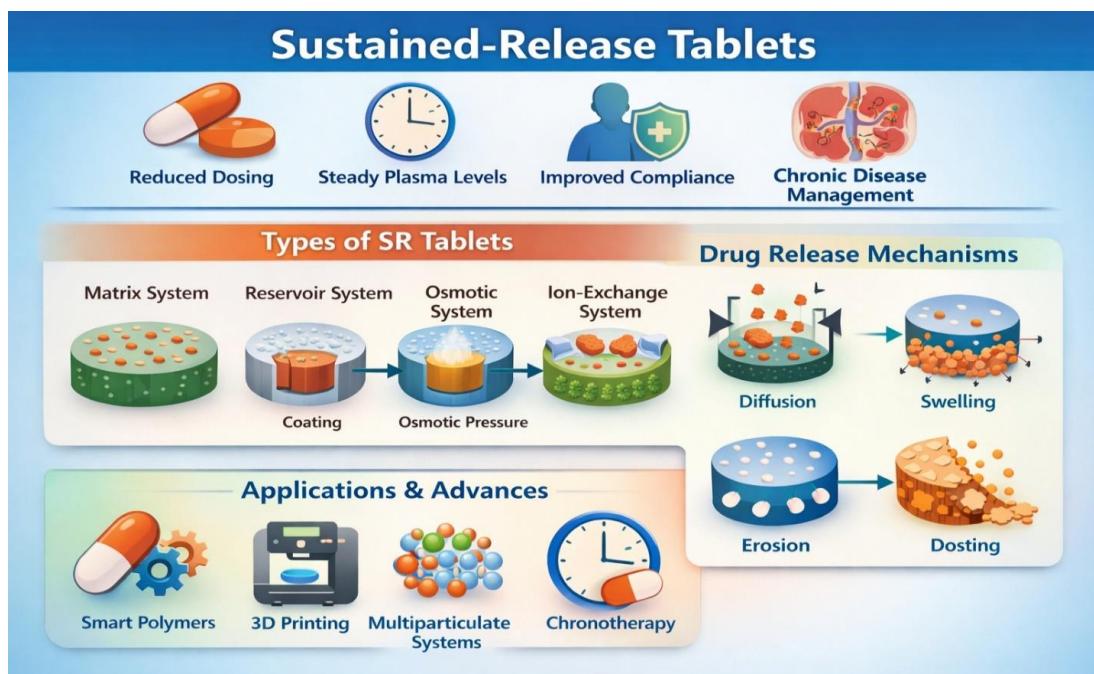
- **3D-Printed Sustained-Release Tablets**

Additive manufacturing allows precise control over tablet geometry, porosity, and internal structure, enabling complex SR profiles tailored to individual patient needs.

- **Nanocomposite Matrix Systems**

Incorporation of nanoparticles or nanofillers into polymer matrices can enhance drug loading, mechanical strength, and controlled release kinetics, while potentially improving bioavailability.

- **Chronotherapeutic SR Dosage Forms**


Tablets designed to release drugs in synchrony with circadian rhythms of disease, optimizing therapeutic outcomes for conditions such as hypertension, asthma, and arthritis.

- **Quality by Design (QbD) Approaches**

Systematic design, risk assessment, and process optimization strategies allow predictable and robust SR formulations, ensuring consistent performance and regulatory compliance.

9. Marketed Sustained-Release Tablets

Drug	Brand Name	Indication
Metformin	Glucophage XR®	Diabetes
Nifedipine	Adalat CC®	Hypertension
Propranolol	Inderal LA®	Cardiovascular disorders
Theophylline	Theo-Dur®	Asthma

Figure 2: Types, mechanism and applications of SR tablets.

10. CONCLUSION

Sustained-release tablets represent a sophisticated and clinically valuable approach to oral drug delivery, offering prolonged therapeutic effects, reduced dosing frequency, and improved patient compliance. Advances in polymer science, manufacturing technologies, and regulatory frameworks continue to enhance the design and performance of SR formulations. Rational formulation design, comprehensive evaluation, and robust kinetic modeling are essential to ensure safety, efficacy, and regulatory acceptance.

REFERENCES

1. Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in Oral Drug Delivery. *Front Pharmacol.* 2021 Feb 19;12:618411. doi: 10.3389/fphar.2021.618411. PMID: 33679401; PMCID: PMC7933596.
2. Talevi, A. (2022). Oral Drug Delivery. In: Talevi, A. (eds) *The ADME Encyclopedia*. Springer, Cham. https://doi.org/10.1007/978-3-030-84860-6_11
3. Pachori, Abhitul & Joshi, Aparna & Kumar, Kapil & Ikram, Ikram & Rajput, Vaishali. (2023). A comprehensive review on sustained release tablets. *Journal of Integral Sciences*. 8-12. 10.37022/jis.v6i4.65.
4. Prajapat, Priyanka & Agrawal, Dilip & Bhaduka, Gaurav. (2022). A brief overview of sustained released drug delivery system. *Journal of Applied Pharmaceutical Research*. 10. 05-11. 10.18231/j.joapr.2022.10.3.5.11.

5. S, Uma & Ch, Suresh & A, Nithin & A, Sindhuja & K, Akanksha & MD, Iftekhar & Khan, Sameer. (2025). Formulation and Evaluation of Sustained Release Matrix Tablet of Cimetidine. *Journal of Pharmaceutical and Biological Research*. 13. 32-39. 10.30904/j.jpbr.2025.4840.
6. Atre, Prachi & Rizvi, Syed. (2025). Advances in Oral Solid Drug Delivery Systems: Quality by Design Approach in Development of Controlled Release Tablets. *BioChem*. 5. 9. 10.3390/biochem5020009.
7. Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. *Molecules*. 2021 Sep 29;26(19):5905. doi: 10.3390/molecules26195905. PMID: 34641447; PMCID: PMC8512302.
8. Alsalhy, S., & Masheta, D. (2025). Sustained release of medications in liquid form: utility, advantages, and disadvantages. *Pharmakeftiki*, 37(2S). <https://doi.org/10.60988/p.v37i2S.269>
9. Singh B, Sharma N. *Sustained Release Drug Delivery System: A Review*. *Int. Res. J. of Pharmacy*, 2012;3(6):44–49.
10. Anusha, Addanki & Ponnekanti, Krishnaphanisri & Tiwari, Ramanuj & Swapna, L. & Hussain, Md & Siddhardha, A. (2023). A review of medicines with sustained release. *World Journal of Biology Pharmacy and Health Sciences*. 13. 221-233. 10.30574/wjbphs.2023.13.3.0141.
11. Roy H, Brahma CK, Nandi S, Parida KR. Formulation and design of sustained release matrix tablets of metformin hydrochloride: Influence of hypromellose and polyacrylate polymers. *Int J Appl Basic Med Res*. 2013 Jan;3(1):55-63. doi: 10.4103/2229-516X.112242. PMID: 23776841; PMCID: PMC3678683.
12. D, Prathyusha & Ch, Suresh & Syed, Gouse & Safa, Amena & Syed, Adiba & Marva, Kauser. (2025). Formulation and Evaluation of Extended Release Matrix Tablets of Zopiclone by using Natural and Synthetic Polymers. *International Journal of Pharmacy and Natural Medicines*. 13. 57-63. 10.30904/j.ijpnm.2025.4838.
13. Gokulakrishnan, S & Ilango, K. & Kalyan, R & Samyuktha, R & Subash, A & Subhashini, K. (2025). An Innovative Formulation Development Approach of Sustained Release Matrix Tablet: A Review. *Journal of Drug Delivery and Therapeutics*. 15. 232-239. 10.22270/jddt.v15i12.7433.
14. Dash, Subhajeet. (2025). Formulation and Evaluation of Oral Sustained Release Tablets. *International Journal of Emerging Knowledge Studies*. 4. 653-662. 10.70333/ijeks-04-05-016.

15. Khadka, Aashish & Giri, Bhupendra & Baral, Rishiram & Shakya, Shaileendra & Shrestha, Ashwinee. (2025). Formulation and In Vitro Characterization of Cellulose-Based Propranolol Hydrochloride Sustained Release Matrix Tablets. BioChem. 5. 14. 10.3390/biochem5020014.
16. Lele Wang, Tijie Duan, Yawen Gao, Heqing Liu, Rui Sun, Tong Wu, Jihui Tang, Development and in vitro-in vivo evaluation of a novel sustained-release tablet based on constant-release surface, Journal of Drug Delivery Science and Technology, Volume 105, 2025, 106603, <https://doi.org/10.1016/j.jddst.2025.106603>.
17. Pandey P, et al. *3D Printing of Oral Tablets: An Emerging Technology for Personalized Drug Delivery*. Drug Dev Ind Pharm, 2020;46:1–12.
18. Torchilin VP. *Smart Polymers and Nanoparticles for Controlled Drug Delivery*. Adv Drug Deliv Rev, 2019;145:65–79.
19. Kaur G, et al. *Chronotherapeutic Drug Delivery Systems: Recent Trends and Patents*. Expert Opin Drug Deliv, 2021;18:353–371.